(2)求使為正值的的集合. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)求使為正值的的集合.

查看答案和解析>>

17.已知函數(shù)求使為正值的的集合.

查看答案和解析>>

精英家教網(wǎng)設(shè)集合W由滿足下列兩個條件的數(shù)列{an}構(gòu)成:
an+an+22
an+1
;②存在實(shí)數(shù)M,使an≤M.( n為正整數(shù))
(Ⅰ)在只有5項(xiàng)的有限數(shù)列{an}、{bn}中,其中a1=1,a2=2,a3=3,a4=4,a5=5;b1=1,b2=4,b3=5,b4=4,b5=1,試判斷數(shù)列{an}、{bn}是否為集合W中的元素;
(Ⅱ)設(shè){cn}是等差數(shù)列,Sn是其前n項(xiàng)和,c3=4,S3=18,證明數(shù)列{Sn}∈W;并寫出M的取值范圍;
(Ⅲ)設(shè)數(shù)列{dn}∈W,且對滿足條件的常數(shù)M,存在正整數(shù)k,使dk=M.
求證:dk+1>dk+2>dk+3

查看答案和解析>>

設(shè)集合W由滿足下列兩個條件的數(shù)列{an}構(gòu)成:①
an+an+2
2
an+1
;②存在實(shí)數(shù)M,使an≤M.(n為正整數(shù))
(Ⅰ)在只有5項(xiàng)的有限數(shù)列{an}、{bn}中,其中a1=1,a2=2,a3=3,a4=4,a5=5;b1=1,b2=4,b3=5,b4=4,b5=1;試判斷數(shù)列{an}、{bn}是否為集合W中的元素;
(Ⅱ)設(shè){cn}是各項(xiàng)為正數(shù)的等比數(shù)列,Sn是其前n項(xiàng)和,c3=
1
4
,S3=
7
4
,試證明{Sn}∈W,并寫出M的取值范圍;
(Ⅲ)設(shè)數(shù)列{dn}∈W,對于滿足條件的M的最小值M0,都有dn≠M(fèi)0(n∈N*).求證:數(shù)列{dn}單調(diào)遞增.

查看答案和解析>>

設(shè)集合W由滿足下列兩個條件的數(shù)列構(gòu)成:

②存在實(shí)數(shù)M,使(n為正整數(shù))

   (I)在只有5項(xiàng)的有限數(shù)列

        ;試判斷數(shù)列是否為集合W的元素;

   (II)設(shè)是各項(xiàng)為正的等比數(shù)列,是其前n項(xiàng)和,證明數(shù)列;并寫出M的取值范圍;

  (III)設(shè)數(shù)列且對滿足條件的M的最小值M0,都有.

        求證:數(shù)列單調(diào)遞增.

查看答案和解析>>

一、

ADBA(理)B(文)B      CD(理)B(文)CDB

二、

11、2  12、13/16   13、 14、(1)(2)

三、

15、解:∵

                T=

 

          又   ∴

16、(文)解:

(理)解:

 

 

 

 

 

17、解:

(Ⅰ)作,垂足為,連結(jié),由側(cè)面底面,得平面

因?yàn)?sub>,所以

,為等腰直角三角形,

如圖,以為坐標(biāo)原點(diǎn),軸正向,建立直角坐標(biāo)系

因?yàn)?sub>,

,

,所以,

,

,,

,,所以

(Ⅱ).

的夾角記為,與平面所成的角記為,因?yàn)?sub>為平面的法向量,所以互余.

,

所以,直線與平面所成的角為

 


同步練習(xí)冊答案