反函數(shù)法 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)函數(shù)y=ax3-x2+cx(a≠0)的圖象如圖所示,它與x軸僅有兩個(gè)公共點(diǎn)O(0,0)與A(xA,0)(xA>0);(1)用反證法證明常數(shù)c≠0;(2)如果xA=
12
,求函數(shù)的解析式.

查看答案和解析>>

函數(shù)y=ax3-x2+cx(a≠0)的圖象如圖所示,它與x軸僅有兩個(gè)公共點(diǎn)O(0,0)與A(xA,0)(xA>0);(1)用反證法證明常數(shù)c≠0;(2)如果數(shù)學(xué)公式,求函數(shù)的解析式.

查看答案和解析>>

函數(shù)y=ax3-x2+cx(a≠0)的圖象如圖所示,它與x軸僅有兩個(gè)公共點(diǎn)O(0,0)與A(xA,0)(xA>0);(1)用反證法證明常數(shù)c≠0;(2)如果xA=
1
2
,求函數(shù)的解析式.

查看答案和解析>>

對(duì)函數(shù)f(x)=ax2+bx+c(a≠0),若存在x1,x2∈R且x1<x2,使得
1
f(x)
=
1
a
(
A
x-x1
+
B
x-x2
)
(其中A,B為常數(shù)),則稱f(x))=ax2+bx+c(a≠0)為“可分解函數(shù)”.
(1)試判斷f(x)=x2+3x+2是否為“可分解函數(shù)”,若是,求出A,B的值;若不是,說(shuō)明理由;
(2)用反證法證明:f(x)=x2+x+1不是“可分解函數(shù)”;
(3)若f(x)=ax2+ax+4(a≠0),是“可分解函數(shù)”,則求a的取值范圍,并寫出A,B關(guān)于a的相應(yīng)的表達(dá)式.

查看答案和解析>>

對(duì)函數(shù),若存在,使得(其中A,B為常數(shù)),則稱為“可分解函數(shù)”。
(1)試判斷是否為“可分解函數(shù)”,若是,求出A,B的值;若不是,說(shuō)明理由w*w^w.k&s#5@u.c~o*m;
(2)用反證法證明:不是“可分解函數(shù)”;
(3)若是“可分解函數(shù)”,則求a的取值范圍,并寫出A,B關(guān)于a的相應(yīng)的表達(dá)式。

查看答案和解析>>


同步練習(xí)冊(cè)答案