3.等比數(shù)列的性質(zhì) ①等比數(shù)列任意兩項間的關(guān)系:如果是等比數(shù)列的第項.是等差數(shù)列的第項.且.公比為.則有, ②對于等比數(shù)列.若.則.也就是:.如圖所示:. ③若數(shù)列是等比數(shù)列.是其前n項的和..那么..成等比數(shù)列. 如下圖所示: 查看更多

 

題目列表(包括答案和解析)

對于任意的n∈N*,若數(shù)列{an}同時滿足下列兩個條件,則稱數(shù)列{an}具有“性質(zhì)m”:
;   ②存在實數(shù)M,使得an≤M成立.
(1)數(shù)列{an}、{bn}中,an=n、(n=1,2,3,4,5),判斷{an}、{bn}是否具有“性質(zhì)m”;
(2)若各項為正數(shù)的等比數(shù)列{cn}的前n項和為Sn,且,,證明:數(shù)列{Sn}具有“性質(zhì)m”,并指出M的取值范圍;
(3)若數(shù)列{dn}的通項公式(n∈N*).對于任意的n≥3(n∈N*).

查看答案和解析>>

設(shè)x1、x2是區(qū)間D上的任意兩點,若函數(shù)y=f(x)滿足f(成立,則稱函數(shù)y=f(x)在區(qū)間D上下凸.

(1)證明函數(shù)f(x)=x+在區(qū)間(0,+∞)上下凸.

(2)若函數(shù)y=f(x)在區(qū)間D上下凸,則對任意的x1,x2,…,xn∈D 有.試根據(jù)下凸倒數(shù)的這一性質(zhì),證明若x1,x2,…,xn∈(0,+∞),則(x1+x2+…+xn)≥n2.

(文)已知Sn是等比數(shù)列{an}的前n項和,且a3,a9,a6成等差數(shù)列,問:S3,S9,S6是否成等差數(shù)列?

查看答案和解析>>

(2013•普陀區(qū)二模)對于任意的n∈N*,若數(shù)列{an}同時滿足下列兩個條件,則稱數(shù)列{an}具有“性質(zhì)m”:
an+an+2
2
an+1
;   ②存在實數(shù)M,使得an≤M成立.
(1)數(shù)列{an}、{bn}中,an=n、bn=2sin
6
(n=1,2,3,4,5),判斷{an}、{bn}是否具有“性質(zhì)m”;
(2)若各項為正數(shù)的等比數(shù)列{cn}的前n項和為Sn,且c3=
1
4
,S3=
7
4
,證明:數(shù)列{Sn}具有“性質(zhì)m”,并指出M的取值范圍;
(3)若數(shù)列{dn}的通項公式dn=
t (3•2n-n)+1
2n
(n∈N*).對于任意的n≥3(n∈N*).

查看答案和解析>>

(2013•普陀區(qū)二模)對于任意的n∈N*,若數(shù)列{an}同時滿足下列兩個條件,則稱數(shù)列{an}具有“性質(zhì)m”:
an+an+2
2
an+1
;          
②存在實數(shù)M,使得an≤M成立.
(1)數(shù)列{an}、{bn}中,an=n、bn=2sin
6
(n=1,2,3,4,5),判斷{an}、{bn}是否具有“性質(zhì)m”;
(2)若各項為正數(shù)的等比數(shù)列{cn}的前n項和為Sn,且c3=
1
4
,S3=
7
4
,求證:數(shù)列{Sn}具有“性質(zhì)m”;
(3)數(shù)列{dn}的通項公式dn=
t (3•2n-n)+1
2n
(n∈N*).對于任意n∈[3,100]且n∈N*,數(shù)列{dn}具有“性質(zhì)m”,求實數(shù)t的取值范圍.

查看答案和解析>>

對于任意的n∈N*,若數(shù)列{an}同時滿足下列兩個條件,則稱數(shù)列{an}具有“性質(zhì)m”:
;          
②存在實數(shù)M,使得an≤M成立.
(1)數(shù)列{an}、{bn}中,an=n、(n=1,2,3,4,5),判斷{an}、{bn}是否具有“性質(zhì)m”;
(2)若各項為正數(shù)的等比數(shù)列{cn}的前n項和為Sn,且,求證:數(shù)列{Sn}具有“性質(zhì)m”;
(3)數(shù)列{dn}的通項公式(n∈N*).對于任意n∈[3,100]且n∈N*,數(shù)列{dn}具有“性質(zhì)m”,求實數(shù)t的取值范圍.

查看答案和解析>>


同步練習冊答案