11.函數的最小正周期為.其中.則 . 12若函數y=cosx (>0)在(0,)上是單調函數.則實數的取值范圍是 . 13已知非空集合.則的取值范圍是 . 查看更多

 

題目列表(包括答案和解析)

設函數f(x)=sin(ωx+?)(ω>0,-
π
2
<?<
π
2
)
,有下列論斷:
①f(x)的圖象關于直線x=
π
12
對稱;
②f(x)的圖象關于(
π
3
,0)
對稱;
③f(x)的最小正周期為π;
④在區(qū)間[-
π
6
,0]
上,f(x)為增函數.
以其中的兩個論斷為條件,剩下的兩個論斷為結論,寫出你認為正確的一個命題:若
①③
①③
,則
②④
②④
.(填序號即可)

查看答案和解析>>

設函數f(x)=sin(ωx+?)(ω>0,-
π
2
<?<
π
2
)
,有下列論斷:
①f(x)的圖象關于直線x=
π
12
對稱;
②f(x)的圖象關于(
π
3
,0)
對稱;
③f(x)的最小正周期為π;
④在區(qū)間[-
π
6
,0]
上,f(x)為增函數.
以其中的兩個論斷為條件,剩下的兩個論斷為結論,寫出你認為正確的一個命題:若______,則______.(填序號即可)

查看答案和解析>>

關于函數f(x)=2sin(3x-
3
4
π)
,有下列命題:
①其最小正周期為
2
3
π
;     
②其圖象由y=2sin3x向左平移
π
4
個單位而得到;
③其表達式寫成f(x)=2cos(3x+
3
4
π)
;
④在x∈[
π
12
5
12
π]
為單調遞增函數;
則其中真命題的個數是( 。

查看答案和解析>>

a
=(a1,a2),
b
=(b1,b2)定義向量
a
?
b
=(a1b1,a2b2),已知
m
=(2,
1
2
),
n
=(
π
3
,0),且點P(x,y)在函數y=sinx的圖象上運動,Q在函數y=f(x)的圖象上運動,且點P和點Q滿足:
OQ
=
m
?
OP
+
n
(其中O為坐標原點),則函數y=f(x)的最大值A及最小正周期T分別為( 。
A、2,π
B、2,4π
C、
1
2
,π
D、
1
2
,4π

查看答案和解析>>

有下列敘述:
①函數f(x)=sin(
x
2
+
4
)
的最小正周期為4π;
②已知函數f(x)=
1+x2
1-x2
(x≠±1),則f(2)+f(3)+f(4)+f(
1
2
)+f(
1
3
)+f(
1
4
)=3
;
③函數y=cos2x+sinx的最小值是-1;
④定義:若任意x∈A,總有a-x∈A(A≠∅),就稱集合A為a的“閉集”,已知集合A⊆{1,2,3,4,5,6}且A為6的“閉集”,則這樣的集合A共有7個.
其中敘述正確的序號是
①③④
①③④

查看答案和解析>>


同步練習冊答案