答案:A 解析:若a=1.則y=cos2x-sin2x=cos2x.此時y的最小正周期為π.故a=1是充分條件. 而由y=cos2ax-sin2ax=cos2ax.此時y的周期為=π. ∴a=±1.故a=1不是必要條件. 評述:本題考查充要條件的基本知識.難點在于周期概念的準(zhǔn)確把握. 查看更多

 

題目列表(包括答案和解析)

已知點A(7,1),B(1,4),若直線yax與線段AB交于點C,且=2,則實數(shù)a=________.

[答案] 1

[解析] 設(shè)C(x0,ax0),則=(x0-7,ax0-1),=(1-x0,4-ax0),

=2,∴,解之得.

 

查看答案和解析>>

【解析】若,必有.構(gòu)造函數(shù):,則恒成立,故有函數(shù)x>0上單調(diào)遞增,即ab成立.其余選項用同樣方法排除.

【答案】A

查看答案和解析>>

定義{a,b,c}為函數(shù)y=ax2+bx+c的“特征數(shù)”.如:函數(shù)y=x2-2x+3的“特征數(shù)”是{1,-2,3},函數(shù)y=2x+3的“特征數(shù)”是{0,2,3,},函數(shù)y=-x的“特征數(shù)”是{0,-1,0}
(1)將“特征數(shù)”是{0,
3
3
,1
}的函數(shù)圖象向下平移2個單位,得到的新函數(shù)的解析式是
y=
3
3
x-1
y=
3
3
x-1
; (答案寫在答卷上)
(2)在(1)中,平移前后的兩個函數(shù)分別與y軸交于A、B兩點,與直線x=
3
分別交于D、C兩點,在平面直角坐標(biāo)系中畫出圖形,判斷以點A、B、C、D為頂點的四邊形形狀,并說明理由;
(3)若(2)中的四邊形與“特征數(shù)”是{1,-2b,b2+
1
2
}的函數(shù)圖象的有交點,求滿足條件的實數(shù)b的取值范圍.

查看答案和解析>>

定義{a,b,c}為函數(shù)y=ax2+bx+c的“特征數(shù)”.如:函數(shù)y=x2-2x+3的“特征數(shù)”是{1,-2,3},函數(shù)y=2x+3的“特征數(shù)”是{0,2,3,},函數(shù)y=-x的“特征數(shù)”是{0,-1,0}
(1)將“特征數(shù)”是{數(shù)學(xué)公式}的函數(shù)圖象向下平移2個單位,得到的新函數(shù)的解析式是________; (答案寫在答卷上)
(2)在(1)中,平移前后的兩個函數(shù)分別與y軸交于A、B兩點,與直線x=數(shù)學(xué)公式分別交于D、C兩點,在平面直角坐標(biāo)系中畫出圖形,判斷以點A、B、C、D為頂點的四邊形形狀,并說明理由;
(3)若(2)中的四邊形與“特征數(shù)”是{數(shù)學(xué)公式}的函數(shù)圖象的有交點,求滿足條件的實數(shù)b的取值范圍.

查看答案和解析>>

解析:A錯誤.如圖①所示,由兩個結(jié)構(gòu)相同的三棱錐疊放在一起構(gòu)成的幾何體,各面都是三角形,但它不是棱錐.B錯誤.如答圖②③所示,若△ABC不是直角三角形,或是直角三角形但旋轉(zhuǎn)軸不是直角邊,所得的幾何體都不是圓錐.C錯誤.若六棱錐的所有棱都相等,則底面多邊形是正六邊形.由幾何圖形知,若以正六邊形為底面,側(cè)棱長必然要大于底面邊長.D正確.

答案:D

查看答案和解析>>


同步練習(xí)冊答案