題目列表(包括答案和解析)
第七部分 熱學(xué)
熱學(xué)知識在奧賽中的要求不以深度見長,但知識點(diǎn)卻非常地多(考綱中羅列的知識點(diǎn)幾乎和整個(gè)力學(xué)——前五部分——的知識點(diǎn)數(shù)目相等)。而且,由于高考要求對熱學(xué)的要求逐年降低(本屆尤其低得“離譜”,連理想氣體狀態(tài)方程都沒有了),這就客觀上給奧賽培訓(xùn)增加了負(fù)擔(dān)。因此,本部分只能采新授課的培訓(xùn)模式,將知識點(diǎn)和例題講解及時(shí)地結(jié)合,爭取讓學(xué)員學(xué)一點(diǎn),就領(lǐng)會(huì)一點(diǎn)、鞏固一點(diǎn),然后再層疊式地往前推進(jìn)。
一、分子動(dòng)理論
1、物質(zhì)是由大量分子組成的(注意分子體積和分子所占據(jù)空間的區(qū)別)
對于分子(單原子分子)間距的計(jì)算,氣體和液體可直接用,對固體,則與分子的空間排列(晶體的點(diǎn)陣)有關(guān)。
【例題1】如圖6-1所示,食鹽(NaCl)的晶體是由鈉離子(圖中的白色圓點(diǎn)表示)和氯離子(圖中的黑色圓點(diǎn)表示)組成的,離子鍵兩兩垂直且鍵長相等。已知食鹽的摩爾質(zhì)量為58.5×10-3kg/mol,密度為2.2×103kg/m3,阿伏加德羅常數(shù)為6.0×1023mol-1,求食鹽晶體中兩個(gè)距離最近的鈉離子中心之間的距離。
【解說】題意所求即圖中任意一個(gè)小立方塊的變長(設(shè)為a)的倍,所以求a成為本題的焦點(diǎn)。
由于一摩爾的氯化鈉含有NA個(gè)氯化鈉分子,事實(shí)上也含有2NA個(gè)鈉離子(或氯離子),所以每個(gè)鈉離子占據(jù)空間為 v =
而由圖不難看出,一個(gè)離子占據(jù)的空間就是小立方體的體積a3 ,
即 a3 = = ,最后,鄰近鈉離子之間的距離l = a
【答案】3.97×10-10m 。
〖思考〗本題還有沒有其它思路?
〖答案〗每個(gè)離子都被八個(gè)小立方體均分,故一個(gè)小立方體含有×8個(gè)離子 = 分子,所以…(此法普遍適用于空間點(diǎn)陣比較復(fù)雜的晶體結(jié)構(gòu)。)
2、物質(zhì)內(nèi)的分子永不停息地作無規(guī)則運(yùn)動(dòng)
固體分子在平衡位置附近做微小振動(dòng)(振幅數(shù)量級為0.1),少數(shù)可以脫離平衡位置運(yùn)動(dòng)。液體分子的運(yùn)動(dòng)則可以用“長時(shí)間的定居(振動(dòng))和短時(shí)間的遷移”來概括,這是由于液體分子間距較固體大的結(jié)果。氣體分子基本“居無定所”,不停地遷移(常溫下,速率數(shù)量級為102m/s)。
無論是振動(dòng)還是遷移,都具備兩個(gè)特點(diǎn):a、偶然無序(雜亂無章)和統(tǒng)計(jì)有序(分子數(shù)比率和速率對應(yīng)一定的規(guī)律——如麥克斯韋速率分布函數(shù),如圖6-2所示);b、劇烈程度和溫度相關(guān)。
氣體分子的三種速率。最可幾速率vP :f(v) = (其中ΔN表示v到v +Δv內(nèi)分子數(shù),N表示分子總數(shù))極大時(shí)的速率,vP == ;平均速率:所有分子速率的算術(shù)平均值, ==;方均根速率:與分子平均動(dòng)能密切相關(guān)的一個(gè)速率,==〔其中R為普適氣體恒量,R = 8.31J/(mol.K)。k為玻耳茲曼常量,k = = 1.38×10-23J/K 〕
【例題2】證明理想氣體的壓強(qiáng)P = n,其中n為分子數(shù)密度,為氣體分子平均動(dòng)能。
【證明】氣體的壓強(qiáng)即單位面積容器壁所承受的分子的撞擊力,這里可以設(shè)理想氣體被封閉在一個(gè)邊長為a的立方體容器中,如圖6-3所示。
考查yoz平面的一個(gè)容器壁,P = ①
設(shè)想在Δt時(shí)間內(nèi),有Nx個(gè)分子(設(shè)質(zhì)量為m)沿x方向以恒定的速率vx碰撞該容器壁,且碰后原速率彈回,則根據(jù)動(dòng)量定理,容器壁承受的壓力
F == ②
在氣體的實(shí)際狀況中,如何尋求Nx和vx呢?
考查某一個(gè)分子的運(yùn)動(dòng),設(shè)它的速度為v ,它沿x、y、z三個(gè)方向分解后,滿足
v2 = + +
分子運(yùn)動(dòng)雖然是雜亂無章的,但仍具有“偶然無序和統(tǒng)計(jì)有序”的規(guī)律,即
= + + = 3 ③
這就解決了vx的問題。另外,從速度的分解不難理解,每一個(gè)分子都有機(jī)會(huì)均等的碰撞3個(gè)容器壁的可能。設(shè)Δt = ,則
Nx = ·3N總 = na3 ④
注意,這里的是指有6個(gè)容器壁需要碰撞,而它們被碰的幾率是均等的。
結(jié)合①②③④式不難證明題設(shè)結(jié)論。
〖思考〗此題有沒有更簡便的處理方法?
〖答案〗有!懊睢彼蟹肿右韵嗤乃俾蕍沿+x、?x、+y、?y、+z、?z這6個(gè)方向運(yùn)動(dòng)(這樣造成的宏觀效果和“雜亂無章”地運(yùn)動(dòng)時(shí)是一樣的),則 Nx =N總 = na3 ;而且vx = v
所以,P = = ==nm = n
3、分子間存在相互作用力(注意分子斥力和氣體分子碰撞作用力的區(qū)別),而且引力和斥力同時(shí)存在,宏觀上感受到的是其合效果。
分子力是保守力,分子間距改變時(shí),分子力做的功可以用分子勢能的變化表示,分子勢能EP隨分子間距的變化關(guān)系如圖6-4所示。
分子勢能和動(dòng)能的總和稱為物體的內(nèi)能。
二、熱現(xiàn)象和基本熱力學(xué)定律
1、平衡態(tài)、狀態(tài)參量
a、凡是與溫度有關(guān)的現(xiàn)象均稱為熱現(xiàn)象,熱學(xué)是研究熱現(xiàn)象的科學(xué)。熱學(xué)研究的對象都是有大量分子組成的宏觀物體,通稱為熱力學(xué)系統(tǒng)(簡稱系統(tǒng))。當(dāng)系統(tǒng)的宏觀性質(zhì)不再隨時(shí)間變化時(shí),這樣的狀態(tài)稱為平衡態(tài)。
b、系統(tǒng)處于平衡態(tài)時(shí),所有宏觀量都具有確定的值,這些確定的值稱為狀態(tài)參量(描述氣體的狀態(tài)參量就是P、V和T)。
c、熱力學(xué)第零定律(溫度存在定律):若兩個(gè)熱力學(xué)系統(tǒng)中的任何一個(gè)系統(tǒng)都和第三個(gè)熱力學(xué)系統(tǒng)處于熱平衡狀態(tài),那么,這兩個(gè)熱力學(xué)系統(tǒng)也必定處于熱平衡。這個(gè)定律反映出:處在同一熱平衡狀態(tài)的所有的熱力學(xué)系統(tǒng)都具有一個(gè)共同的宏觀特征,這一特征是由這些互為熱平衡系統(tǒng)的狀態(tài)所決定的一個(gè)數(shù)值相等的狀態(tài)函數(shù),這個(gè)狀態(tài)函數(shù)被定義為溫度。
2、溫度
a、溫度即物體的冷熱程度,溫度的數(shù)值表示法稱為溫標(biāo)。典型的溫標(biāo)有攝氏溫標(biāo)t、華氏溫標(biāo)F(F = t + 32)和熱力學(xué)溫標(biāo)T(T = t + 273.15)。
b、(理想)氣體溫度的微觀解釋: = kT (i為分子的自由度 = 平動(dòng)自由度t + 轉(zhuǎn)動(dòng)自由度r + 振動(dòng)自由度s 。對單原子分子i = 3 ,“剛性”〈忽略振動(dòng),s = 0,但r = 2〉雙原子分子i = 5 。對于三個(gè)或三個(gè)以上的多原子分子,i = 6 。能量按自由度是均分的),所以說溫度是物質(zhì)分子平均動(dòng)能的標(biāo)志。
c、熱力學(xué)第三定律:熱力學(xué)零度不可能達(dá)到。(結(jié)合分子動(dòng)理論的觀點(diǎn)2和溫度的微觀解釋很好理解。)
3、熱力學(xué)過程
a、熱傳遞。熱傳遞有三種方式:傳導(dǎo)(對長L、橫截面積S的柱體,Q = KSΔ
第八部分 靜電場
第一講 基本知識介紹
在奧賽考綱中,靜電學(xué)知識點(diǎn)數(shù)目不算多,總數(shù)和高考考綱基本相同,但在個(gè)別知識點(diǎn)上,奧賽的要求顯然更加深化了:如非勻強(qiáng)電場中電勢的計(jì)算、電容器的連接和靜電能計(jì)算、電介質(zhì)的極化等。在處理物理問題的方法上,對無限分割和疊加原理提出了更高的要求。
如果把靜電場的問題分為兩部分,那就是電場本身的問題、和對場中帶電體的研究,高考考綱比較注重第二部分中帶電粒子的運(yùn)動(dòng)問題,而奧賽考綱更注重第一部分和第二部分中的靜態(tài)問題。也就是說,奧賽關(guān)注的是電場中更本質(zhì)的內(nèi)容,關(guān)注的是縱向的深化和而非橫向的綜合。
一、電場強(qiáng)度
1、實(shí)驗(yàn)定律
a、庫侖定律
內(nèi)容;
條件:⑴點(diǎn)電荷,⑵真空,⑶點(diǎn)電荷靜止或相對靜止。事實(shí)上,條件⑴和⑵均不能視為對庫侖定律的限制,因?yàn)榀B加原理可以將點(diǎn)電荷之間的靜電力應(yīng)用到一般帶電體,非真空介質(zhì)可以通過介電常數(shù)將k進(jìn)行修正(如果介質(zhì)分布是均勻和“充分寬廣”的,一般認(rèn)為k′= k /εr)。只有條件⑶,它才是靜電學(xué)的基本前提和出發(fā)點(diǎn)(但這一點(diǎn)又是常常被忽視和被不恰當(dāng)?shù)亍熬C合應(yīng)用”的)。
b、電荷守恒定律
c、疊加原理
2、電場強(qiáng)度
a、電場強(qiáng)度的定義
電場的概念;試探電荷(檢驗(yàn)電荷);定義意味著一種適用于任何電場的對電場的檢測手段;電場線是抽象而直觀地描述電場有效工具(電場線的基本屬性)。
b、不同電場中場強(qiáng)的計(jì)算
決定電場強(qiáng)弱的因素有兩個(gè):場源(帶電量和帶電體的形狀)和空間位置。這可以從不同電場的場強(qiáng)決定式看出——
⑴點(diǎn)電荷:E = k
結(jié)合點(diǎn)電荷的場強(qiáng)和疊加原理,我們可以求出任何電場的場強(qiáng),如——
⑵均勻帶電環(huán),垂直環(huán)面軸線上的某點(diǎn)P:E = ,其中r和R的意義見圖7-1。
⑶均勻帶電球殼
內(nèi)部:E內(nèi) = 0
外部:E外 = k ,其中r指考察點(diǎn)到球心的距離
如果球殼是有厚度的的(內(nèi)徑R1 、外徑R2),在殼體中(R1<r<R2):
E = ,其中ρ為電荷體密度。這個(gè)式子的物理意義可以參照萬有引力定律當(dāng)中(條件部分)的“剝皮法則”理解〔即為圖7-2中虛線以內(nèi)部分的總電量…〕。
⑷無限長均勻帶電直線(電荷線密度為λ):E =
⑸無限大均勻帶電平面(電荷面密度為σ):E = 2πkσ
二、電勢
1、電勢:把一電荷從P點(diǎn)移到參考點(diǎn)P0時(shí)電場力所做的功W與該電荷電量q的比值,即
U =
參考點(diǎn)即電勢為零的點(diǎn),通常取無窮遠(yuǎn)或大地為參考點(diǎn)。
和場強(qiáng)一樣,電勢是屬于場本身的物理量。W則為電荷的電勢能。
2、典型電場的電勢
a、點(diǎn)電荷
以無窮遠(yuǎn)為參考點(diǎn),U = k
b、均勻帶電球殼
以無窮遠(yuǎn)為參考點(diǎn),U外 = k ,U內(nèi) = k
3、電勢的疊加
由于電勢的是標(biāo)量,所以電勢的疊加服從代數(shù)加法。很顯然,有了點(diǎn)電荷電勢的表達(dá)式和疊加原理,我們可以求出任何電場的電勢分布。
4、電場力對電荷做功
WAB = q(UA - UB)= qUAB
三、靜電場中的導(dǎo)體
靜電感應(yīng)→靜電平衡(狹義和廣義)→靜電屏蔽
1、靜電平衡的特征可以總結(jié)為以下三層含義——
a、導(dǎo)體內(nèi)部的合場強(qiáng)為零;表面的合場強(qiáng)不為零且一般各處不等,表面的合場強(qiáng)方向總是垂直導(dǎo)體表面。
b、導(dǎo)體是等勢體,表面是等勢面。
c、導(dǎo)體內(nèi)部沒有凈電荷;孤立導(dǎo)體的凈電荷在表面的分布情況取決于導(dǎo)體表面的曲率。
2、靜電屏蔽
導(dǎo)體殼(網(wǎng)罩)不接地時(shí),可以實(shí)現(xiàn)外部對內(nèi)部的屏蔽,但不能實(shí)現(xiàn)內(nèi)部對外部的屏蔽;導(dǎo)體殼(網(wǎng)罩)接地后,既可實(shí)現(xiàn)外部對內(nèi)部的屏蔽,也可實(shí)現(xiàn)內(nèi)部對外部的屏蔽。
四、電容
1、電容器
孤立導(dǎo)體電容器→一般電容器
2、電容
a、定義式 C =
b、決定式。決定電容器電容的因素是:導(dǎo)體的形狀和位置關(guān)系、絕緣介質(zhì)的種類,所以不同電容器有不同的電容
⑴平行板電容器 C = = ,其中ε為絕對介電常數(shù)(真空中ε0 = ,其它介質(zhì)中ε= ),εr則為相對介電常數(shù),εr = 。
⑵柱形電容器:C =
⑶球形電容器:C =
3、電容器的連接
a、串聯(lián) = +++ … +
b、并聯(lián) C = C1 + C2 + C3 + … + Cn
4、電容器的能量
用圖7-3表征電容器的充電過程,“搬運(yùn)”電荷做功W就是圖中陰影的面積,這也就是電容器的儲能E ,所以
E = q0U0 = C =
電場的能量。電容器儲存的能量究竟是屬于電荷還是屬于電場?正確答案是后者,因此,我們可以將電容器的能量用場強(qiáng)E表示。
對平行板電容器 E總 = E2
認(rèn)為電場能均勻分布在電場中,則單位體積的電場儲能 w = E2 。而且,這以結(jié)論適用于非勻強(qiáng)電場。
五、電介質(zhì)的極化
1、電介質(zhì)的極化
a、電介質(zhì)分為兩類:無極分子和有極分子,前者是指在沒有外電場時(shí)每個(gè)分子的正、負(fù)電荷“重心”彼此重合(如氣態(tài)的H2 、O2 、N2和CO2),后者則反之(如氣態(tài)的H2O 、SO2和液態(tài)的水硝基笨)
b、電介質(zhì)的極化:當(dāng)介質(zhì)中存在外電場時(shí),無極分子會(huì)變?yōu)橛袠O分子,有極分子會(huì)由原來的雜亂排列變成規(guī)則排列,如圖7-4所示。
2、束縛電荷、自由電荷、極化電荷與宏觀過剩電荷
a、束縛電荷與自由電荷:在圖7-4中,電介質(zhì)左右兩端分別顯現(xiàn)負(fù)電和正電,但這些電荷并不能自由移動(dòng),因此稱為束縛電荷,除了電介質(zhì),導(dǎo)體中的原子核和內(nèi)層電子也是束縛電荷;反之,能夠自由移動(dòng)的電荷稱為自由電荷。事實(shí)上,導(dǎo)體中存在束縛電荷與自由電荷,絕緣體中也存在束縛電荷和自由電荷,只是它們的比例差異較大而已。
b、極化電荷是更嚴(yán)格意義上的束縛電荷,就是指圖7-4中電介質(zhì)兩端顯現(xiàn)的電荷。而宏觀過剩電荷是相對極化電荷來說的,它是指可以自由移動(dòng)的凈電荷。宏觀過剩電荷與極化電荷的重要區(qū)別是:前者能夠用來沖放電,也能用儀表測量,但后者卻不能。
第二講 重要模型與專題
一、場強(qiáng)和電場力
【物理情形1】試證明:均勻帶電球殼內(nèi)部任意一點(diǎn)的場強(qiáng)均為零。
【模型分析】這是一個(gè)疊加原理應(yīng)用的基本事例。
如圖7-5所示,在球殼內(nèi)取一點(diǎn)P ,以P為頂點(diǎn)做兩個(gè)對頂?shù)、頂角很小的錐體,錐體與球面相交得到球面上的兩個(gè)面元ΔS1和ΔS2 ,設(shè)球面的電荷面密度為σ,則這兩個(gè)面元在P點(diǎn)激發(fā)的場強(qiáng)分別為
ΔE1 = k
ΔE2 = k
為了弄清ΔE1和ΔE2的大小關(guān)系,引進(jìn)錐體頂部的立體角ΔΩ ,顯然
= ΔΩ =
所以 ΔE1 = k ,ΔE2 = k ,即:ΔE1 = ΔE2 ,而它們的方向是相反的,故在P點(diǎn)激發(fā)的合場強(qiáng)為零。
同理,其它各個(gè)相對的面元ΔS3和ΔS4 、ΔS5和ΔS6 … 激發(fā)的合場強(qiáng)均為零。原命題得證。
【模型變換】半徑為R的均勻帶電球面,電荷的面密度為σ,試求球心處的電場強(qiáng)度。
【解析】如圖7-6所示,在球面上的P處取一極小的面元ΔS ,它在球心O點(diǎn)激發(fā)的場強(qiáng)大小為
ΔE = k ,方向由P指向O點(diǎn)。
無窮多個(gè)這樣的面元激發(fā)的場強(qiáng)大小和ΔS激發(fā)的完全相同,但方向各不相同,它們矢量合成的效果怎樣呢?這里我們要大膽地預(yù)見——由于由于在x方向、y方向上的對稱性,Σ = Σ = 0 ,最后的ΣE = ΣEz ,所以先求
ΔEz = ΔEcosθ= k ,而且ΔScosθ為面元在xoy平面的投影,設(shè)為ΔS′
所以 ΣEz = ΣΔS′
而 ΣΔS′= πR2
【答案】E = kπσ ,方向垂直邊界線所在的平面。
〖學(xué)員思考〗如果這個(gè)半球面在yoz平面的兩邊均勻帶有異種電荷,面密度仍為σ,那么,球心處的場強(qiáng)又是多少?
〖推薦解法〗將半球面看成4個(gè)球面,每個(gè)球面在x、y、z三個(gè)方向上分量均為 kπσ,能夠?qū)ΨQ抵消的將是y、z兩個(gè)方向上的分量,因此ΣE = ΣEx …
〖答案〗大小為kπσ,方向沿x軸方向(由帶正電的一方指向帶負(fù)電的一方)。
【物理情形2】有一個(gè)均勻的帶電球體,球心在O點(diǎn),半徑為R ,電荷體密度為ρ ,球體內(nèi)有一個(gè)球形空腔,空腔球心在O′點(diǎn),半徑為R′,= a ,如圖7-7所示,試求空腔中各點(diǎn)的場強(qiáng)。
【模型分析】這里涉及兩個(gè)知識的應(yīng)用:一是均勻帶電球體的場強(qiáng)定式(它也是來自疊加原理,這里具體用到的是球體內(nèi)部的結(jié)論,即“剝皮法則”),二是填補(bǔ)法。
將球體和空腔看成完整的帶正電的大球和帶負(fù)電(電荷體密度相等)的小球的集合,對于空腔中任意一點(diǎn)P ,設(shè) = r1 , = r2 ,則大球激發(fā)的場強(qiáng)為
E1 = k = kρπr1 ,方向由O指向P
“小球”激發(fā)的場強(qiáng)為
E2 = k = kρπr2 ,方向由P指向O′
E1和E2的矢量合成遵從平行四邊形法則,ΣE的方向如圖。又由于矢量三角形PE1ΣE和空間位置三角形OP O′是相似的,ΣE的大小和方向就不難確定了。
【答案】恒為kρπa ,方向均沿O → O′,空腔里的電場是勻強(qiáng)電場。
〖學(xué)員思考〗如果在模型2中的OO′連線上O′一側(cè)距離O為b(b>R)的地方放一個(gè)電量為q的點(diǎn)電荷,它受到的電場力將為多大?
〖解說〗上面解法的按部就班應(yīng)用…
〖答〗πkρq〔?〕。
二、電勢、電量與電場力的功
【物理情形1】如圖7-8所示,半徑為R的圓環(huán)均勻帶電,電荷線密度為λ,圓心在O點(diǎn),過圓心跟環(huán)面垂直的軸線上有P點(diǎn), = r ,以無窮遠(yuǎn)為參考點(diǎn),試求P點(diǎn)的電勢UP 。
【模型分析】這是一個(gè)電勢標(biāo)量疊加的簡單模型。先在圓環(huán)上取一個(gè)元段ΔL ,它在P點(diǎn)形成的電勢
ΔU = k
環(huán)共有段,各段在P點(diǎn)形成的電勢相同,而且它們是標(biāo)量疊加。
【答案】UP =
〖思考〗如果上題中知道的是環(huán)的總電量Q ,則UP的結(jié)論為多少?如果這個(gè)總電量的分布不是均勻的,結(jié)論會(huì)改變嗎?
〖答〗UP = ;結(jié)論不會(huì)改變。
〖再思考〗將環(huán)換成半徑為R的薄球殼,總電量仍為Q ,試問:(1)當(dāng)電量均勻分布時(shí),球心電勢為多少?球內(nèi)(包括表面)各點(diǎn)電勢為多少?(2)當(dāng)電量不均勻分布時(shí),球心電勢為多少?球內(nèi)(包括表面)各點(diǎn)電勢為多少?
〖解說〗(1)球心電勢的求解從略;
球內(nèi)任一點(diǎn)的求解參看圖7-5
ΔU1 = k= k·= kσΔΩ
ΔU2 = kσΔΩ
它們代數(shù)疊加成 ΔU = ΔU1 + ΔU2 = kσΔΩ
而 r1 + r2 = 2Rcosα
所以 ΔU = 2RkσΔΩ
所有面元形成電勢的疊加 ΣU = 2RkσΣΔΩ
注意:一個(gè)完整球面的ΣΔΩ = 4π(單位:球面度sr),但作為對頂?shù)腻F角,ΣΔΩ只能是2π ,所以——
ΣU = 4πRkσ= k
(2)球心電勢的求解和〖思考〗相同;
球內(nèi)任一點(diǎn)的電勢求解可以從(1)問的求解過程得到結(jié)論的反證。
〖答〗(1)球心、球內(nèi)任一點(diǎn)的電勢均為k ;(2)球心電勢仍為k ,但其它各點(diǎn)的電勢將隨電量的分布情況的不同而不同(內(nèi)部不再是等勢體,球面不再是等勢面)。
【相關(guān)應(yīng)用】如圖7-9所示,球形導(dǎo)體空腔內(nèi)、外壁的半徑分別為R1和R2 ,帶有凈電量+q ,現(xiàn)在其內(nèi)部距球心為r的地方放一個(gè)電量為+Q的點(diǎn)電荷,試求球心處的電勢。
【解析】由于靜電感應(yīng),球殼的內(nèi)、外壁形成兩個(gè)帶電球殼。球心電勢是兩個(gè)球殼形成電勢、點(diǎn)電荷形成電勢的合效果。
根據(jù)靜電感應(yīng)的嘗試,內(nèi)壁的電荷量為-Q ,外壁的電荷量為+Q+q ,雖然內(nèi)壁的帶電是不均勻的,根據(jù)上面的結(jié)論,其在球心形成的電勢仍可以應(yīng)用定式,所以…
【答案】Uo = k - k + k 。
〖反饋練習(xí)〗如圖7-10所示,兩個(gè)極薄的同心導(dǎo)體球殼A和B,半徑分別為RA和RB ,現(xiàn)讓A殼接地,而在B殼的外部距球心d的地方放一個(gè)電量為+q的點(diǎn)電荷。試求:(1)A球殼的感應(yīng)電荷量;(2)外球殼的電勢。
〖解說〗這是一個(gè)更為復(fù)雜的靜電感應(yīng)情形,B殼將形成圖示的感應(yīng)電荷分布(但沒有凈電量),A殼的情形未畫出(有凈電量),它們的感應(yīng)電荷分布都是不均勻的。
此外,我們還要用到一個(gè)重要的常識:接地導(dǎo)體(A殼)的電勢為零。但值得注意的是,這里的“為零”是一個(gè)合效果,它是點(diǎn)電荷q 、A殼、B殼(帶同樣電荷時(shí))單獨(dú)存在時(shí)在A中形成的的電勢的代數(shù)和,所以,當(dāng)我們以球心O點(diǎn)為對象,有
UO = k + k + k = 0
QB應(yīng)指B球殼上的凈電荷量,故 QB = 0
所以 QA = -q
☆學(xué)員討論:A殼的各處電勢均為零,我們的方程能不能針對A殼表面上的某點(diǎn)去列?(答:不能,非均勻帶電球殼的球心以外的點(diǎn)不能應(yīng)用定式。
基于剛才的討論,求B的電勢時(shí)也只能求B的球心的電勢(獨(dú)立的B殼是等勢體,球心電勢即為所求)——
UB = k + k
〖答〗(1)QA = -q ;(2)UB = k(1-) 。
【物理情形2】圖7-11中,三根實(shí)線表示三根首尾相連的等長絕緣細(xì)棒,每根棒上的電荷分布情況與絕緣棒都換成導(dǎo)體棒時(shí)完全相同。點(diǎn)A是Δabc的中心,點(diǎn)B則與A相對bc棒對稱,且已測得它們的電勢分別為UA和UB 。試問:若將ab棒取走,A、B兩點(diǎn)的電勢將變?yōu)槎嗌伲?/p>
【模型分析】由于細(xì)棒上的電荷分布既不均勻、三根細(xì)棒也沒有構(gòu)成環(huán)形,故前面的定式不能直接應(yīng)用。若用元段分割→疊加,也具有相當(dāng)?shù)睦щy。所以這里介紹另一種求電勢的方法。
每根細(xì)棒的電荷分布雖然復(fù)雜,但相對各自的中點(diǎn)必然是對稱的,而且三根棒的總電量、分布情況彼此必然相同。這就意味著:①三棒對A點(diǎn)的電勢貢獻(xiàn)都相同(可設(shè)為U1);②ab棒、ac棒對B點(diǎn)的電勢貢獻(xiàn)相同(可設(shè)為U2);③bc棒對A、B兩點(diǎn)的貢獻(xiàn)相同(為U1)。
所以,取走ab前 3U1 = UA
2U2 + U1 = UB
取走ab后,因三棒是絕緣體,電荷分布不變,故電勢貢獻(xiàn)不變,所以
UA′= 2U1
UB′= U1 + U2
【答案】UA′= UA ;UB′= UA + UB 。
〖模型變換〗正四面體盒子由彼此絕緣的四塊導(dǎo)體板構(gòu)成,各導(dǎo)體板帶電且電勢分別為U1 、U2 、U3和U4 ,則盒子中心點(diǎn)O的電勢U等于多少?
〖解說〗此處的四塊板子雖然位置相對O點(diǎn)具有對稱性,但電量各不相同,因此對O點(diǎn)的電勢貢獻(xiàn)也不相同,所以應(yīng)該想一點(diǎn)辦法——
我們用“填補(bǔ)法”將電量不對稱的情形加以改觀:先將每一塊導(dǎo)體板復(fù)制三塊,作成一個(gè)正四面體盒子,然后將這四個(gè)盒子位置重合地放置——構(gòu)成一個(gè)有四層壁的新盒子。在這個(gè)新盒子中,每個(gè)壁的電量將是完全相同的(為原來四塊板的電量之和)、電勢也完全相同(為U1 + U2 + U3 + U4),新盒子表面就構(gòu)成了一個(gè)等勢面、整個(gè)盒子也是一個(gè)等勢體,故新盒子的中心電勢為
U′= U1 + U2 + U3 + U4
最后回到原來的單層盒子,中心電勢必為 U = U′
〖答〗U = (U1 + U2 + U3 + U4)。
☆學(xué)員討論:剛才的這種解題思想是否適用于“物理情形2”?(答:不行,因?yàn)槿切胃鬟吷想妱蓦m然相等,但中點(diǎn)的電勢和邊上的并不相等。)
〖反饋練習(xí)〗電荷q均勻分布在半球面ACB上,球面半徑為R ,CD為通過半球頂點(diǎn)C和球心O的軸線,如圖7-12所示。P、Q為CD軸線上相對O點(diǎn)對稱的兩點(diǎn),已知P點(diǎn)的電勢為UP ,試求Q點(diǎn)的電勢UQ 。
〖解說〗這又是一個(gè)填補(bǔ)法的應(yīng)用。將半球面補(bǔ)成完整球面,并令右邊內(nèi)、外層均勻地帶上電量為q的電荷,如圖7-12所示。
從電量的角度看,右半球面可以看作不存在,故這時(shí)P、Q的電勢不會(huì)有任何改變。
而換一個(gè)角度看,P、Q的電勢可以看成是兩者的疊加:①帶電量為2q的完整球面;②帶電量為-q的半球面。
考查P點(diǎn),UP = k + U半球面
其中 U半球面顯然和為填補(bǔ)時(shí)Q點(diǎn)的電勢大小相等、符號相反,即 U半球面= -UQ
以上的兩個(gè)關(guān)系已經(jīng)足以解題了。
〖答〗UQ = k - UP 。
【物理情形3】如圖7-13所示,A、B兩點(diǎn)相距2L ,圓弧是以B為圓心、L為半徑的半圓。A處放有電量為q的電荷,B處放有電量為-q的點(diǎn)電荷。試問:(1)將單位正電荷從O點(diǎn)沿移到D點(diǎn),電場力對它做了多少功?(2)將單位負(fù)電荷從D點(diǎn)沿AB的延長線移到無窮遠(yuǎn)處去,電場力對它做多少功?
【模型分析】電勢疊加和關(guān)系WAB = q(UA - UB)= qUAB的基本應(yīng)用。
UO = k + k = 0
UD = k + k = -
U∞ = 0
再用功與電勢的關(guān)系即可。
【答案】(1);(2)。
【相關(guān)應(yīng)用】在不計(jì)重力空間,有A、B兩個(gè)帶電小球,電量分別為q1和q2 ,質(zhì)量分別為m1和m2 ,被固定在相距L的兩點(diǎn)。試問:(1)若解除A球的固定,它能獲得的最大動(dòng)能是多少?(2)若同時(shí)解除兩球的固定,它們各自的獲得的最大動(dòng)能是多少?(3)未解除固定時(shí),這個(gè)系統(tǒng)的靜電勢能是多少?
【解說】第(1)問甚間;第(2)問在能量方面類比反沖裝置的能量計(jì)算,另啟用動(dòng)量守恒關(guān)系;第(3)問是在前兩問基礎(chǔ)上得出的必然結(jié)論…(這里就回到了一個(gè)基本的觀念斧正:勢能是屬于場和場中物體的系統(tǒng),而非單純屬于場中物體——這在過去一直是被忽視的。在兩個(gè)點(diǎn)電荷的環(huán)境中,我們通常說“兩個(gè)點(diǎn)電荷的勢能”是多少。)
【答】(1)k;(2)Ek1 = k ,Ek2 = k;(3)k 。
〖思考〗設(shè)三個(gè)點(diǎn)電荷的電量分別為q1 、q2和q3 ,兩兩相距為r12 、r23和r31 ,則這個(gè)點(diǎn)電荷系統(tǒng)的靜電勢能是多少?
〖解〗略。
〖答〗k(++)。
〖反饋應(yīng)用〗如圖7-14所示,三個(gè)帶同種電荷的相同金屬小球,每個(gè)球的質(zhì)量均為m 、電量均為q ,用長度為L的三根絕緣輕繩連接著,系統(tǒng)放在光滑、絕緣的水平面上,F(xiàn)將其中的一根繩子剪斷,三個(gè)球?qū)㈤_始運(yùn)動(dòng)起來,試求中間這個(gè)小球的最大速度。
〖解〗設(shè)剪斷的是1、3之間的繩子,動(dòng)力學(xué)分析易知,2球獲得最大動(dòng)能時(shí),1、2之間的繩子與2、3之間的繩子剛好應(yīng)該在一條直線上。而且由動(dòng)量守恒知,三球不可能有沿繩子方向的速度。設(shè)2球的速度為v ,1球和3球的速度為v′,則
動(dòng)量關(guān)系 mv + 2m v′= 0
能量關(guān)系 3k = 2 k + k + mv2 + 2m
解以上兩式即可的v值。
〖答〗v = q 。
三、電場中的導(dǎo)體和電介質(zhì)
【物理情形】兩塊平行放置的很大的金屬薄板A和B,面積都是S ,間距為d(d遠(yuǎn)小于金屬板的線度),已知A板帶凈電量+Q1 ,B板帶盡電量+Q2 ,且Q2<Q1 ,試求:(1)兩板內(nèi)外表面的電量分別是多少;(2)空間各處的場強(qiáng);(3)兩板間的電勢差。
【模型分析】由于靜電感應(yīng),A、B兩板的四個(gè)平面的電量將呈現(xiàn)一定規(guī)律的分布(金屬板雖然很薄,但內(nèi)部合場強(qiáng)為零的結(jié)論還是存在的);這里應(yīng)注意金屬板“很大”的前提條件,它事實(shí)上是指物理無窮大,因此,可以應(yīng)用無限大平板的場強(qiáng)定式。
為方便解題,做圖7-15,忽略邊緣效應(yīng),四個(gè)面的電荷分布應(yīng)是均勻的,設(shè)四個(gè)面的電荷面密度分別為σ1 、σ2 、σ3和σ4 ,顯然
(σ1 + σ2)S = Q1
(σ3 + σ4)S = Q2
A板內(nèi)部空間場強(qiáng)為零,有 2πk(σ1 ? σ2 ? σ3 ? σ4)= 0
A板內(nèi)部空間場強(qiáng)為零,有 2πk(σ1 + σ2 + σ3 ? σ4)= 0
解以上四式易得 σ1 = σ4 =
σ2 = ?σ3 =
有了四個(gè)面的電荷密度,Ⅰ、Ⅱ、Ⅲ空間的場強(qiáng)就好求了〔如EⅡ =2πk(σ1 + σ2 ? σ3 ? σ4)= 2πk〕。
最后,UAB = EⅡd
【答案】(1)A板外側(cè)電量、A板內(nèi)側(cè)電量,B板內(nèi)側(cè)電量?、B板外側(cè)電量;(2)A板外側(cè)空間場強(qiáng)2πk,方向垂直A板向外,A、B板之間空間場強(qiáng)2πk,方向由A垂直指向B,B板外側(cè)空間場強(qiáng)2πk,方向垂直B板向外;(3)A、B兩板的電勢差為2πkd,A板電勢高。
〖學(xué)員思考〗如果兩板帶等量異號的凈電荷,兩板的外側(cè)空間場強(qiáng)等于多少?(答:為零。)
〖學(xué)員討論〗(原模型中)作為一個(gè)電容器,它的“電量”是多少(答:)?如果在板間充滿相對介電常數(shù)為εr的電介質(zhì),是否會(huì)影響四個(gè)面的電荷分布(答:不會(huì))?是否會(huì)影響三個(gè)空間的場強(qiáng)(答:只會(huì)影響Ⅱ空間的場強(qiáng))?
〖學(xué)員討論〗(原模型中)我們是否可以求出A、B兩板之間的靜電力?〔答:可以;以A為對象,外側(cè)受力·(方向相左),內(nèi)側(cè)受力·(方向向右),它們合成即可,結(jié)論為F = Q1Q2 ,排斥力。〕
【模型變換】如圖7-16所示,一平行板電容器,極板面積為S ,其上半部為真空,而下半部充滿相對介電常數(shù)為εr的均勻電介質(zhì),當(dāng)兩極板分別帶上+Q和?Q的電量后,試求:(1)板上自由電荷的分布;(2)兩板之間的場強(qiáng);(3)介質(zhì)表面的極化電荷。
【解說】電介質(zhì)的充入雖然不能改變內(nèi)表面的電量總數(shù),但由于改變了場強(qiáng),故對電荷的分布情況肯定有影響。設(shè)真空部分電量為Q1 ,介質(zhì)部分電量為Q2 ,顯然有
Q1 + Q2 = Q
兩板分別為等勢體,將電容器看成上下兩個(gè)電容器的并聯(lián),必有
U1 = U2 即 = ,即 =
解以上兩式即可得Q1和Q2 。
場強(qiáng)可以根據(jù)E = 關(guān)系求解,比較常規(guī)(上下部分的場強(qiáng)相等)。
上下部分的電量是不等的,但場強(qiáng)居然相等,這怎么解釋?從公式的角度看,E = 2πkσ(單面平板),當(dāng)k 、σ同時(shí)改變,可以保持E不變,但這是一種結(jié)論所展示的表象。從內(nèi)在的角度看,k的改變正是由于極化電荷的出現(xiàn)所致,也就是說,極化電荷的存在相當(dāng)于在真空中形成了一個(gè)新的電場,正是這個(gè)電場與自由電荷(在真空中)形成的電場疊加成為E2 ,所以
E2 = 4πk(σ ? σ′)= 4πk( ? )
請注意:①這里的σ′和Q′是指極化電荷的面密度和總量;② E = 4πkσ的關(guān)系是由兩個(gè)帶電面疊加的合效果。
【答案】(1)真空部分的電量為Q ,介質(zhì)部分的電量為Q ;(2)整個(gè)空間的場強(qiáng)均為 ;(3)Q 。
〖思考應(yīng)用〗一個(gè)帶電量為Q的金屬小球,周圍充滿相對介電常數(shù)為εr的均勻電介質(zhì),試求與與導(dǎo)體表面接觸的介質(zhì)表面的極化電荷量。
〖解〗略。
〖答〗Q′= Q 。
四、電容器的相關(guān)計(jì)算
【物理情形1】由許多個(gè)電容為C的電容器組成一個(gè)如圖7-17所示的多級網(wǎng)絡(luò),試問:(1)在最后一級的右邊并聯(lián)一個(gè)多大電容C′,可使整個(gè)網(wǎng)絡(luò)的A、B兩端電容也為C′?(2)不接C′,但無限地增加網(wǎng)絡(luò)的級數(shù),整個(gè)網(wǎng)絡(luò)A、B兩端的總電容是多少?
【模型分析】這是一個(gè)練習(xí)電容電路簡化基本事例。
第(1)問中,未給出具體級數(shù),一般結(jié)論應(yīng)適用特殊情形:令級數(shù)為1 ,于是
+ = 解C′即可。
第(2)問中,因?yàn)椤盁o限”,所以“無限加一級后仍為無限”,不難得出方程
+ =
【答案】(1)C ;(2)C 。
【相關(guān)模型】在圖7-18所示的電路中,已知C1 = C2 = C3 = C9 = 1μF ,C4 = C5 = C6 = C7 = 2μF ,C8 = C10 = 3μF ,試求A、B之間的等效電容。
【解說】對于既非串聯(lián)也非并聯(lián)的電路,需要用到一種“Δ→Y型變換”,參見圖7-19,根據(jù)三個(gè)端點(diǎn)之間的電容等效,容易得出定式——
Δ→Y型:Ca =
Cb =
Cc =
Y→Δ型:C1 =
C2 =
C3 =
有了這樣的定式后,我們便可以進(jìn)行如圖7-20所示的四步電路簡化(為了方便,電容不宜引進(jìn)新的符號表達(dá),而是直接將變換后的量值標(biāo)示在圖中)——
【答】約2.23μF 。
【物理情形2】如圖7-21所示的電路中,三個(gè)電容器完全相同,電源電動(dòng)勢ε1 = 3.0V ,ε2 = 4.5V,開關(guān)K1和K2接通前電容器均未帶電,試求K1和K2接通后三個(gè)電容器的電壓Uao 、Ubo和Uco各為多少。
【解說】這是一個(gè)考查電容器電路的基本習(xí)題,解題的關(guān)鍵是要抓與o相連的三塊極板(俗稱“孤島”)的總電量為零。
電量關(guān)系:++= 0
電勢關(guān)系:ε1 = Uao + Uob = Uao ? Ubo
ε2 = Ubo + Uoc = Ubo ? Uco
解以上三式即可。
【答】Uao = 3.5V ,Ubo = 0.5V ,Uco = ?4.0V 。
【伸展應(yīng)用】如圖7-22所示,由n個(gè)單元組成的電容器網(wǎng)絡(luò),每一個(gè)單元由三個(gè)電容器連接而成,其中有兩個(gè)的電容為3C ,另一個(gè)的電容為3C 。以a、b為網(wǎng)絡(luò)的輸入端,a′、b′為輸出端,今在a、b間加一個(gè)恒定電壓U ,而在a′b′間接一個(gè)電容為C的電容器,試求:(1)從第k單元輸入端算起,后面所有電容器儲存的總電能;(2)若把第一單元輸出端與后面斷開,再除去電源,并把它的輸入端短路,則這個(gè)單元的三個(gè)電容器儲存的總電能是多少?
【解說】這是一個(gè)結(jié)合網(wǎng)絡(luò)計(jì)算和“孤島現(xiàn)象”的典型事例。
(1)類似“物理情形1”的計(jì)算,可得 C總 = Ck = C
所以,從輸入端算起,第k單元后的電壓的經(jīng)驗(yàn)公式為 Uk =
再算能量儲存就不難了。
(2)斷開前,可以算出第一單元的三個(gè)電容器、以及后面“系統(tǒng)”的電量分配如圖7-23中的左圖所示。這時(shí),C1的右板和C2的左板(或C2的下板和C3的右板)形成“孤島”。此后,電容器的相互充電過程(C3類比為“電源”)滿足——
電量關(guān)系:Q1′= Q3′
Q2′+ Q3′=
電勢關(guān)系:+ =
從以上三式解得 Q1′= Q3′= ,Q2′= ,這樣系統(tǒng)的儲能就可以用得出了。
【答】(1)Ek = ;(2) 。
〖學(xué)員思考〗圖7-23展示的過程中,始末狀態(tài)的電容器儲能是否一樣?(答:不一樣;在相互充電的過程中,導(dǎo)線消耗的焦耳熱已不可忽略。)
☆第七部分完☆
第二部分 牛頓運(yùn)動(dòng)定律
第一講 牛頓三定律
一、牛頓第一定律
1、定律。慣性的量度
2、觀念意義,突破“初態(tài)困惑”
二、牛頓第二定律
1、定律
2、理解要點(diǎn)
a、矢量性
b、獨(dú)立作用性:ΣF → a ,ΣFx → ax …
c、瞬時(shí)性。合力可突變,故加速度可突變(與之對比:速度和位移不可突變);牛頓第二定律展示了加速度的決定式(加速度的定義式僅僅展示了加速度的“測量手段”)。
3、適用條件
a、宏觀、低速
b、慣性系
對于非慣性系的定律修正——引入慣性力、參與受力分析
三、牛頓第三定律
1、定律
2、理解要點(diǎn)
a、同性質(zhì)(但不同物體)
b、等時(shí)效(同增同減)
c、無條件(與運(yùn)動(dòng)狀態(tài)、空間選擇無關(guān))
第二講 牛頓定律的應(yīng)用
一、牛頓第一、第二定律的應(yīng)用
單獨(dú)應(yīng)用牛頓第一定律的物理問題比較少,一般是需要用其解決物理問題中的某一個(gè)環(huán)節(jié)。
應(yīng)用要點(diǎn):合力為零時(shí),物體靠慣性維持原有運(yùn)動(dòng)狀態(tài);只有物體有加速度時(shí)才需要合力。有質(zhì)量的物體才有慣性。a可以突變而v、s不可突變。
1、如圖1所示,在馬達(dá)的驅(qū)動(dòng)下,皮帶運(yùn)輸機(jī)上方的皮帶以恒定的速度向右運(yùn)動(dòng),F(xiàn)將一工件(大小不計(jì))在皮帶左端A點(diǎn)輕輕放下,則在此后的過程中( )
A、一段時(shí)間內(nèi),工件將在滑動(dòng)摩擦力作用下,對地做加速運(yùn)動(dòng)
B、當(dāng)工件的速度等于v時(shí),它與皮帶之間的摩擦力變?yōu)殪o摩擦力
C、當(dāng)工件相對皮帶靜止時(shí),它位于皮帶上A點(diǎn)右側(cè)的某一點(diǎn)
D、工件在皮帶上有可能不存在與皮帶相對靜止的狀態(tài)
解說:B選項(xiàng)需要用到牛頓第一定律,A、C、D選項(xiàng)用到牛頓第二定律。
較難突破的是A選項(xiàng),在為什么不會(huì)“立即跟上皮帶”的問題上,建議使用反證法(t → 0 ,a → ∞ ,則ΣFx → ∞ ,必然會(huì)出現(xiàn)“供不應(yīng)求”的局面)和比較法(為什么人跳上速度不大的物體可以不發(fā)生相對滑動(dòng)?因?yàn)槿耸强梢孕巫、重心可以調(diào)節(jié)的特殊“物體”)
此外,本題的D選項(xiàng)還要用到勻變速運(yùn)動(dòng)規(guī)律。用勻變速運(yùn)動(dòng)規(guī)律和牛頓第二定律不難得出
只有當(dāng)L > 時(shí)(其中μ為工件與皮帶之間的動(dòng)摩擦因素),才有相對靜止的過程,否則沒有。
答案:A、D
思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,試求工件到達(dá)皮帶右端的時(shí)間t(過程略,答案為5.5s)
進(jìn)階練習(xí):在上面“思考”題中,將工件給予一水平向右的初速v0 ,其它條件不變,再求t(學(xué)生分以下三組進(jìn)行)——
① v0 = 1m/s (答:0.5 + 37/8 = 5.13s)
② v0 = 4m/s (答:1.0 + 3.5 = 4.5s)
③ v0 = 1m/s (答:1.55s)
2、質(zhì)量均為m的兩只鉤碼A和B,用輕彈簧和輕繩連接,然后掛在天花板上,如圖2所示。試問:
① 如果在P處剪斷細(xì)繩,在剪斷瞬時(shí),B的加速度是多少?
② 如果在Q處剪斷彈簧,在剪斷瞬時(shí),B的加速度又是多少?
解說:第①問是常規(guī)處理。由于“彈簧不會(huì)立即發(fā)生形變”,故剪斷瞬間彈簧彈力維持原值,所以此時(shí)B鉤碼的加速度為零(A的加速度則為2g)。
第②問需要我們反省這樣一個(gè)問題:“彈簧不會(huì)立即發(fā)生形變”的原因是什么?是A、B兩物的慣性,且速度v和位移s不能突變。但在Q點(diǎn)剪斷彈簧時(shí),彈簧卻是沒有慣性的(沒有質(zhì)量),遵從理想模型的條件,彈簧應(yīng)在一瞬間恢復(fù)原長!即彈簧彈力突變?yōu)榱恪?/p>
答案:0 ;g 。
二、牛頓第二定律的應(yīng)用
應(yīng)用要點(diǎn):受力較少時(shí),直接應(yīng)用牛頓第二定律的“矢量性”解題。受力比較多時(shí),結(jié)合正交分解與“獨(dú)立作用性”解題。
在難度方面,“瞬時(shí)性”問題相對較大。
1、滑塊在固定、光滑、傾角為θ的斜面上下滑,試求其加速度。
解說:受力分析 → 根據(jù)“矢量性”定合力方向 → 牛頓第二定律應(yīng)用
答案:gsinθ。
思考:如果斜面解除固定,上表仍光滑,傾角仍為θ,要求滑塊與斜面相對靜止,斜面應(yīng)具備一個(gè)多大的水平加速度?(解題思路完全相同,研究對象仍為滑塊。但在第二環(huán)節(jié)上應(yīng)注意區(qū)別。答:gtgθ。)
進(jìn)階練習(xí)1:在一向右運(yùn)動(dòng)的車廂中,用細(xì)繩懸掛的小球呈現(xiàn)如圖3所示的穩(wěn)定狀態(tài),試求車廂的加速度。(和“思考”題同理,答:gtgθ。)
進(jìn)階練習(xí)2、如圖4所示,小車在傾角為α的斜面上勻加速運(yùn)動(dòng),車廂頂用細(xì)繩懸掛一小球,發(fā)現(xiàn)懸繩與豎直方向形成一個(gè)穩(wěn)定的夾角β。試求小車的加速度。
解:繼續(xù)貫徹“矢量性”的應(yīng)用,但數(shù)學(xué)處理復(fù)雜了一些(正弦定理解三角形)。
分析小球受力后,根據(jù)“矢量性”我們可以做如圖5所示的平行四邊形,并找到相應(yīng)的夾角。設(shè)張力T與斜面方向的夾角為θ,則
θ=(90°+ α)- β= 90°-(β-α) (1)
對灰色三角形用正弦定理,有
= (2)
解(1)(2)兩式得:ΣF =
最后運(yùn)用牛頓第二定律即可求小球加速度(即小車加速度)
答: 。
2、如圖6所示,光滑斜面傾角為θ,在水平地面上加速運(yùn)動(dòng)。斜面上用一條與斜面平行的細(xì)繩系一質(zhì)量為m的小球,當(dāng)斜面加速度為a時(shí)(a<ctgθ),小球能夠保持相對斜面靜止。試求此時(shí)繩子的張力T 。
解說:當(dāng)力的個(gè)數(shù)較多,不能直接用平行四邊形尋求合力時(shí),宜用正交分解處理受力,在對應(yīng)牛頓第二定律的“獨(dú)立作用性”列方程。
正交坐標(biāo)的選擇,視解題方便程度而定。
解法一:先介紹一般的思路。沿加速度a方向建x軸,與a垂直的方向上建y軸,如圖7所示(N為斜面支持力)。于是可得兩方程
ΣFx = ma ,即Tx - Nx = ma
ΣFy = 0 , 即Ty + Ny = mg
代入方位角θ,以上兩式成為
T cosθ-N sinθ = ma (1)
T sinθ + Ncosθ = mg (2)
這是一個(gè)關(guān)于T和N的方程組,解(1)(2)兩式得:T = mgsinθ + ma cosθ
解法二:下面嘗試一下能否獨(dú)立地解張力T 。將正交分解的坐標(biāo)選擇為:x——斜面方向,y——和斜面垂直的方向。這時(shí),在分解受力時(shí),只分解重力G就行了,但值得注意,加速度a不在任何一個(gè)坐標(biāo)軸上,是需要分解的。矢量分解后,如圖8所示。
根據(jù)獨(dú)立作用性原理,ΣFx = max
即:T - Gx = max
即:T - mg sinθ = m acosθ
顯然,獨(dú)立解T值是成功的。結(jié)果與解法一相同。
答案:mgsinθ + ma cosθ
思考:當(dāng)a>ctgθ時(shí),張力T的結(jié)果會(huì)變化嗎?(從支持力的結(jié)果N = mgcosθ-ma sinθ看小球脫離斜面的條件,求脫離斜面后,θ條件已沒有意義。答:T = m 。)
學(xué)生活動(dòng):用正交分解法解本節(jié)第2題“進(jìn)階練習(xí)2”
進(jìn)階練習(xí):如圖9所示,自動(dòng)扶梯與地面的夾角為30°,但扶梯的臺階是水平的。當(dāng)扶梯以a = 4m/s2的加速度向上運(yùn)動(dòng)時(shí),站在扶梯上質(zhì)量為60kg的人相對扶梯靜止。重力加速度g = 10 m/s2,試求扶梯對人的靜摩擦力f 。
解:這是一個(gè)展示獨(dú)立作用性原理的經(jīng)典例題,建議學(xué)生選擇兩種坐標(biāo)(一種是沿a方向和垂直a方向,另一種是水平和豎直方向),對比解題過程,進(jìn)而充分領(lǐng)會(huì)用牛頓第二定律解題的靈活性。
答:208N 。
3、如圖10所示,甲圖系著小球的是兩根輕繩,乙圖系著小球的是一根輕彈簧和輕繩,方位角θ已知,F(xiàn)將它們的水平繩剪斷,試求:在剪斷瞬間,兩種情形下小球的瞬時(shí)加速度。
解說:第一步,闡明繩子彈力和彈簧彈力的區(qū)別。
(學(xué)生活動(dòng))思考:用豎直的繩和彈簧懸吊小球,并用豎直向下的力拉住小球靜止,然后同時(shí)釋放,會(huì)有什么現(xiàn)象?原因是什么?
結(jié)論——繩子的彈力可以突變而彈簧的彈力不能突變(胡克定律)。
第二步,在本例中,突破“繩子的拉力如何瞬時(shí)調(diào)節(jié)”這一難點(diǎn)(從即將開始的運(yùn)動(dòng)來反推)。
知識點(diǎn),牛頓第二定律的瞬時(shí)性。
答案:a甲 = gsinθ ;a乙 = gtgθ 。
應(yīng)用:如圖11所示,吊籃P掛在天花板上,與吊籃質(zhì)量相等的物體Q被固定在吊籃中的輕彈簧托住,當(dāng)懸掛吊籃的細(xì)繩被燒斷瞬間,P、Q的加速度分別是多少?
解:略。
答:2g ;0 。
三、牛頓第二、第三定律的應(yīng)用
要點(diǎn):在動(dòng)力學(xué)問題中,如果遇到幾個(gè)研究對象時(shí),就會(huì)面臨如何處理對象之間的力和對象與外界之間的力問題,這時(shí)有必要引進(jìn)“系統(tǒng)”、“內(nèi)力”和“外力”等概念,并適時(shí)地運(yùn)用牛頓第三定律。
在方法的選擇方面,則有“隔離法”和“整體法”。前者是根本,后者有局限,也有難度,但常常使解題過程簡化,使過程的物理意義更加明晰。
對N個(gè)對象,有N個(gè)隔離方程和一個(gè)(可能的)整體方程,這(N + 1)個(gè)方程中必有一個(gè)是通解方程,如何取舍,視解題方便程度而定。
補(bǔ)充:當(dāng)多個(gè)對象不具有共同的加速度時(shí),一般來講,整體法不可用,但也有一種特殊的“整體方程”,可以不受這個(gè)局限(可以介紹推導(dǎo)過程)——
Σ= m1 + m2 + m3 + … + mn
其中Σ只能是系統(tǒng)外力的矢量和,等式右邊也是矢量相加。
1、如圖12所示,光滑水平面上放著一個(gè)長為L的均質(zhì)直棒,現(xiàn)給棒一個(gè)沿棒方向的、大小為F的水平恒力作用,則棒中各部位的張力T隨圖中x的關(guān)系怎樣?
解說:截取隔離對象,列整體方程和隔離方程(隔離右段較好)。
答案:N = x 。
思考:如果水平面粗糙,結(jié)論又如何?
解:分兩種情況,(1)能拉動(dòng);(2)不能拉動(dòng)。
第(1)情況的計(jì)算和原題基本相同,只是多了一個(gè)摩擦力的處理,結(jié)論的化簡也麻煩一些。
第(2)情況可設(shè)棒的總質(zhì)量為M ,和水平面的摩擦因素為μ,而F = μMg ,其中l(wèi)<L ,則x<(L-l)的右段沒有張力,x>(L-l)的左端才有張力。
答:若棒仍能被拉動(dòng),結(jié)論不變。
若棒不能被拉動(dòng),且F = μMg時(shí)(μ為棒與平面的摩擦因素,l為小于L的某一值,M為棒的總質(zhì)量),當(dāng)x<(L-l),N≡0 ;當(dāng)x>(L-l),N = 〔x -〈L-l〉〕。
應(yīng)用:如圖13所示,在傾角為θ的固定斜面上,疊放著兩個(gè)長方體滑塊,它們的質(zhì)量分別為m1和m2 ,它們之間的摩擦因素、和斜面的摩擦因素分別為μ1和μ2 ,系統(tǒng)釋放后能夠一起加速下滑,則它們之間的摩擦力大小為:
A、μ1 m1gcosθ ; B、μ2 m1gcosθ ;
C、μ1 m2gcosθ ; D、μ1 m2gcosθ ;
解:略。
答:B 。(方向沿斜面向上。)
思考:(1)如果兩滑塊不是下滑,而是以初速度v0一起上沖,以上結(jié)論會(huì)變嗎?(2)如果斜面光滑,兩滑塊之間有沒有摩擦力?(3)如果將下面的滑塊換成如圖14所示的盒子,上面的滑塊換成小球,它們以初速度v0一起上沖,球應(yīng)對盒子的哪一側(cè)內(nèi)壁有壓力?
解:略。
答:(1)不會(huì);(2)沒有;(3)若斜面光滑,對兩內(nèi)壁均無壓力,若斜面粗糙,對斜面上方的內(nèi)壁有壓力。
2、如圖15所示,三個(gè)物體質(zhì)量分別為m1 、m2和m3 ,帶滑輪的物體放在光滑水平面上,滑輪和所有接觸面的摩擦均不計(jì),繩子的質(zhì)量也不計(jì),為使三個(gè)物體無相對滑動(dòng),水平推力F應(yīng)為多少?
解說:
此題對象雖然有三個(gè),但難度不大。隔離m2 ,豎直方向有一個(gè)平衡方程;隔離m1 ,水平方向有一個(gè)動(dòng)力學(xué)方程;整體有一個(gè)動(dòng)力學(xué)方程。就足以解題了。
答案:F = 。
思考:若將質(zhì)量為m3物體右邊挖成凹形,讓m2可以自由擺動(dòng)(而不與m3相碰),如圖16所示,其它條件不變。是否可以選擇一個(gè)恰當(dāng)?shù)腇′,使三者無相對運(yùn)動(dòng)?如果沒有,說明理由;如果有,求出這個(gè)F′的值。
解:此時(shí),m2的隔離方程將較為復(fù)雜。設(shè)繩子張力為T ,m2的受力情況如圖,隔離方程為:
= m2a
隔離m1 ,仍有:T = m1a
解以上兩式,可得:a = g
最后用整體法解F即可。
答:當(dāng)m1 ≤ m2時(shí),沒有適應(yīng)題意的F′;當(dāng)m1 > m2時(shí),適應(yīng)題意的F′= 。
3、一根質(zhì)量為M的木棒,上端用細(xì)繩系在天花板上,棒上有一質(zhì)量為m的貓,如圖17所示,F(xiàn)將系木棒的繩子剪斷,同時(shí)貓相對棒往上爬,但要求貓對地的高度不變,則棒的加速度將是多少?
解說:法一,隔離法。需要設(shè)出貓爪抓棒的力f ,然后列貓的平衡方程和棒的動(dòng)力學(xué)方程,解方程組即可。
法二,“新整體法”。
據(jù)Σ= m1 + m2 + m3 + … + mn ,貓和棒的系統(tǒng)外力只有兩者的重力,豎直向下,而貓的加速度a1 = 0 ,所以:
( M + m )g = m·0 + M a1
解棒的加速度a1十分容易。
答案:g 。
四、特殊的連接體
當(dāng)系統(tǒng)中各個(gè)體的加速度不相等時(shí),經(jīng)典的整體法不可用。如果各個(gè)體的加速度不在一條直線上,“新整體法”也將有一定的困難(矢量求和不易)。此時(shí),我們回到隔離法,且要更加注意找各參量之間的聯(lián)系。
解題思想:抓某個(gè)方向上加速度關(guān)系。方法:“微元法”先看位移關(guān)系,再推加速度關(guān)系。、
1、如圖18所示,一質(zhì)量為M 、傾角為θ的光滑斜面,放置在光滑的水平面上,另一個(gè)質(zhì)量為m的滑塊從斜面頂端釋放,試求斜面的加速度。
解說:本題涉及兩個(gè)物體,它們的加速度關(guān)系復(fù)雜,但在垂直斜面方向上,大小是相等的。對兩者列隔離方程時(shí),務(wù)必在這個(gè)方向上進(jìn)行突破。
(學(xué)生活動(dòng))定型判斷斜面的運(yùn)動(dòng)情況、滑塊的運(yùn)動(dòng)情況。
位移矢量示意圖如圖19所示。根據(jù)運(yùn)動(dòng)學(xué)規(guī)律,加速度矢量a1和a2也具有這樣的關(guān)系。
(學(xué)生活動(dòng))這兩個(gè)加速度矢量有什么關(guān)系?
沿斜面方向、垂直斜面方向建x 、y坐標(biāo),可得:
a1y = a2y ①
且:a1y = a2sinθ ②
隔離滑塊和斜面,受力圖如圖20所示。
對滑塊,列y方向隔離方程,有:
mgcosθ- N = ma1y ③
對斜面,仍沿合加速度a2方向列方程,有:
Nsinθ= Ma2 ④
解①②③④式即可得a2 。
答案:a2 = 。
(學(xué)生活動(dòng))思考:如何求a1的值?
解:a1y已可以通過解上面的方程組求出;a1x只要看滑塊的受力圖,列x方向的隔離方程即可,顯然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后據(jù)a1 = 求a1 。
答:a1 = 。
2、如圖21所示,與水平面成θ角的AB棒上有一滑套C ,可以無摩擦地在棒上滑動(dòng),開始時(shí)與棒的A端相距b ,相對棒靜止。當(dāng)棒保持傾角θ不變地沿水平面勻加速運(yùn)動(dòng),加速度為a(且a>gtgθ)時(shí),求滑套C從棒的A端滑出所經(jīng)歷的時(shí)間。
解說:這是一個(gè)比較特殊的“連接體問題”,尋求運(yùn)動(dòng)學(xué)參量的關(guān)系似乎比動(dòng)力學(xué)分析更加重要。動(dòng)力學(xué)方面,只需要隔離滑套C就行了。
(學(xué)生活動(dòng))思考:為什么題意要求a>gtgθ?(聯(lián)系本講第二節(jié)第1題之“思考題”)
定性繪出符合題意的運(yùn)動(dòng)過程圖,如圖22所示:S表示棒的位移,S1表示滑套的位移。沿棒與垂直棒建直角坐標(biāo)后,S1x表示S1在x方向上的分量。不難看出:
S1x + b = S cosθ ①
設(shè)全程時(shí)間為t ,則有:
S = at2 ②
S1x = a1xt2 ③
而隔離滑套,受力圖如圖23所示,顯然:
mgsinθ= ma1x ④
解①②③④式即可。
答案:t =
另解:如果引進(jìn)動(dòng)力學(xué)在非慣性系中的修正式 Σ+ * = m (注:*為慣性力),此題極簡單。過程如下——
以棒為參照,隔離滑套,分析受力,如圖24所示。
注意,滑套相對棒的加速度a相是沿棒向上的,故動(dòng)力學(xué)方程為:
F*cosθ- mgsinθ= ma相 (1)
其中F* = ma (2)
而且,以棒為參照,滑套的相對位移S相就是b ,即:
b = S相 = a相 t2 (3)
解(1)(2)(3)式就可以了。
第二講 配套例題選講
教材范本:龔霞玲主編《奧林匹克物理思維訓(xùn)練教材》,知識出版社,2002年8月第一版。
例題選講針對“教材”第三章的部分例題和習(xí)題。
第十部分 磁場
第一講 基本知識介紹
《磁場》部分在奧賽考剛中的考點(diǎn)很少,和高考要求的區(qū)別不是很大,只是在兩處有深化:a、電流的磁場引進(jìn)定量計(jì)算;b、對帶電粒子在復(fù)合場中的運(yùn)動(dòng)進(jìn)行了更深入的分析。
一、磁場與安培力
1、磁場
a、永磁體、電流磁場→磁現(xiàn)象的電本質(zhì)
b、磁感強(qiáng)度、磁通量
c、穩(wěn)恒電流的磁場
*畢奧-薩伐爾定律(Biot-Savart law):對于電流強(qiáng)度為I 、長度為dI的導(dǎo)體元段,在距離為r的點(diǎn)激發(fā)的“元磁感應(yīng)強(qiáng)度”為dB 。矢量式d= k,(d表示導(dǎo)體元段的方向沿電流的方向、為導(dǎo)體元段到考查點(diǎn)的方向矢量);或用大小關(guān)系式dB = k結(jié)合安培定則尋求方向亦可。其中 k = 1.0×10?7N/A2 。應(yīng)用畢薩定律再結(jié)合矢量疊加原理,可以求解任何形狀導(dǎo)線在任何位置激發(fā)的磁感強(qiáng)度。
畢薩定律應(yīng)用在“無限長”直導(dǎo)線的結(jié)論:B = 2k ;
*畢薩定律應(yīng)用在環(huán)形電流垂直中心軸線上的結(jié)論:B = 2πkI ;
*畢薩定律應(yīng)用在“無限長”螺線管內(nèi)部的結(jié)論:B = 2πknI 。其中n為單位長度螺線管的匝數(shù)。
2、安培力
a、對直導(dǎo)體,矢量式為 = I;或表達(dá)為大小關(guān)系式 F = BILsinθ再結(jié)合“左手定則”解決方向問題(θ為B與L的夾角)。
b、彎曲導(dǎo)體的安培力
⑴整體合力
折線導(dǎo)體所受安培力的合力等于連接始末端連線導(dǎo)體(電流不變)的的安培力。
證明:參照圖9-1,令MN段導(dǎo)體的安培力F1與NO段導(dǎo)體的安培力F2的合力為F,則F的大小為
F =
= BI
= BI
關(guān)于F的方向,由于ΔFF2P∽ΔMNO,可以證明圖9-1中的兩個(gè)灰色三角形相似,這也就證明了F是垂直MO的,再由于ΔPMO是等腰三角形(這個(gè)證明很容易),故F在MO上的垂足就是MO的中點(diǎn)了。
證畢。
由于連續(xù)彎曲的導(dǎo)體可以看成是無窮多元段直線導(dǎo)體的折合,所以,關(guān)于折線導(dǎo)體整體合力的結(jié)論也適用于彎曲導(dǎo)體。(說明:這個(gè)結(jié)論只適用于勻強(qiáng)磁場。)
⑵導(dǎo)體的內(nèi)張力
彎曲導(dǎo)體在平衡或加速的情形下,均會(huì)出現(xiàn)內(nèi)張力,具體分析時(shí),可將導(dǎo)體在被考查點(diǎn)切斷,再將被切斷的某一部分隔離,列平衡方程或動(dòng)力學(xué)方程求解。
c、勻強(qiáng)磁場對線圈的轉(zhuǎn)矩
如圖9-2所示,當(dāng)一個(gè)矩形線圈(線圈面積為S、通以恒定電流I)放入勻強(qiáng)磁場中,且磁場B的方向平行線圈平面時(shí),線圈受安培力將轉(zhuǎn)動(dòng)(并自動(dòng)選擇垂直B的中心軸OO′,因?yàn)橘|(zhì)心無加速度),此瞬時(shí)的力矩為
M = BIS
幾種情形的討論——
⑴增加匝數(shù)至N ,則 M = NBIS ;
⑵轉(zhuǎn)軸平移,結(jié)論不變(證明從略);
⑶線圈形狀改變,結(jié)論不變(證明從略);
*⑷磁場平行線圈平面相對原磁場方向旋轉(zhuǎn)α角,則M = BIScosα ,如圖9-3;
證明:當(dāng)α = 90°時(shí),顯然M = 0 ,而磁場是可以分解的,只有垂直轉(zhuǎn)軸的的分量Bcosα才能產(chǎn)生力矩…
⑸磁場B垂直O(jiān)O′軸相對線圈平面旋轉(zhuǎn)β角,則M = BIScosβ ,如圖9-4。
證明:當(dāng)β = 90°時(shí),顯然M = 0 ,而磁場是可以分解的,只有平行線圈平面的的分量Bcosβ才能產(chǎn)生力矩…
說明:在默認(rèn)的情況下,討論線圈的轉(zhuǎn)矩時(shí),認(rèn)為線圈的轉(zhuǎn)軸垂直磁場。如果沒有人為設(shè)定,而是讓安培力自行選定轉(zhuǎn)軸,這時(shí)的力矩稱為力偶矩。
二、洛侖茲力
1、概念與規(guī)律
a、 = q,或展開為f = qvBsinθ再結(jié)合左、右手定則確定方向(其中θ為與的夾角)。安培力是大量帶電粒子所受洛侖茲力的宏觀體現(xiàn)。
b、能量性質(zhì)
由于總垂直與確定的平面,故總垂直 ,只能起到改變速度方向的作用。結(jié)論:洛侖茲力可對帶電粒子形成沖量,卻不可能做功;颍郝鍋銎澚墒箮щ娏W拥膭(dòng)量發(fā)生改變卻不能使其動(dòng)能發(fā)生改變。
問題:安培力可以做功,為什么洛侖茲力不能做功?
解說:應(yīng)該注意“安培力是大量帶電粒子所受洛侖茲力的宏觀體現(xiàn)”這句話的確切含義——“宏觀體現(xiàn)”和“完全相等”是有區(qū)別的。我們可以分兩種情形看這個(gè)問題:(1)導(dǎo)體靜止時(shí),所有粒子的洛侖茲力的合力等于安培力(這個(gè)證明從略);(2)導(dǎo)體運(yùn)動(dòng)時(shí),粒子參與的是沿導(dǎo)體棒的運(yùn)動(dòng)v1和導(dǎo)體運(yùn)動(dòng)v2的合運(yùn)動(dòng),其合速度為v ,這時(shí)的洛侖茲力f垂直v而安培力垂直導(dǎo)體棒,它們是不可能相等的,只能說安培力是洛侖茲力的分力f1 = qv1B的合力(見圖9-5)。
很顯然,f1的合力(安培力)做正功,而f不做功(或者說f1的正功和f2的負(fù)功的代數(shù)和為零)。(事實(shí)上,由于電子定向移動(dòng)速率v1在10?5m/s數(shù)量級,而v2一般都在10?2m/s數(shù)量級以上,致使f1只是f的一個(gè)極小分量。)
☆如果從能量的角度看這個(gè)問題,當(dāng)導(dǎo)體棒放在光滑的導(dǎo)軌上時(shí)(參看圖9-6),導(dǎo)體棒必獲得動(dòng)能,這個(gè)動(dòng)能是怎么轉(zhuǎn)化來的呢?
若先將導(dǎo)體棒卡住,回路中形成穩(wěn)恒的電流,電流的功轉(zhuǎn)化為回路的焦耳熱。而將導(dǎo)體棒釋放后,導(dǎo)體棒受安培力加速,將形成感應(yīng)電動(dòng)勢(反電動(dòng)勢)。動(dòng)力學(xué)分析可知,導(dǎo)體棒的最后穩(wěn)定狀態(tài)是勻速運(yùn)動(dòng)(感應(yīng)電動(dòng)勢等于電源電動(dòng)勢,回路電流為零)。由于達(dá)到穩(wěn)定速度前的回路電流是逐漸減小的,故在相同時(shí)間內(nèi)發(fā)的焦耳熱將比導(dǎo)體棒被卡住時(shí)少。所以,導(dǎo)體棒動(dòng)能的增加是以回路焦耳熱的減少為代價(jià)的。
2、僅受洛侖茲力的帶電粒子運(yùn)動(dòng)
a、⊥時(shí),勻速圓周運(yùn)動(dòng),半徑r = ,周期T =
b、與成一般夾角θ時(shí),做等螺距螺旋運(yùn)動(dòng),半徑r = ,螺距d =
這個(gè)結(jié)論的證明一般是將分解…(過程從略)。
☆但也有一個(gè)問題,如果將分解(成垂直速度分量B2和平行速度分量B1 ,如圖9-7所示),粒子的運(yùn)動(dòng)情形似乎就不一樣了——在垂直B2的平面內(nèi)做圓周運(yùn)動(dòng)?
其實(shí),在圖9-7中,B1平行v只是一種暫時(shí)的現(xiàn)象,一旦受B2的洛侖茲力作用,v改變方向后就不再平行B1了。當(dāng)B1施加了洛侖茲力后,粒子的“圓周運(yùn)動(dòng)”就無法達(dá)成了。(而在分解v的處理中,這種局面是不會(huì)出現(xiàn)的。)
3、磁聚焦
a、結(jié)構(gòu):見圖9-8,K和G分別為陰極和控制極,A為陽極加共軸限制膜片,螺線管提供勻強(qiáng)磁場。
b、原理:由于控制極和共軸膜片的存在,電子進(jìn)磁場的發(fā)散角極小,即速度和磁場的夾角θ極小,各粒子做螺旋運(yùn)動(dòng)時(shí)可以認(rèn)為螺距彼此相等(半徑可以不等),故所有粒子會(huì)“聚焦”在熒光屏上的P點(diǎn)。
4、回旋加速器
a、結(jié)構(gòu)&原理(注意加速時(shí)間應(yīng)忽略)
b、磁場與交變電場頻率的關(guān)系
因回旋周期T和交變電場周期T′必相等,故 =
c、最大速度 vmax = = 2πRf
5、質(zhì)譜儀
速度選擇器&粒子圓周運(yùn)動(dòng),和高考要求相同。
第二講 典型例題解析
一、磁場與安培力的計(jì)算
【例題1】兩根無限長的平行直導(dǎo)線a、b相距40cm,通過電流的大小都是3.0A,方向相反。試求位于兩根導(dǎo)線之間且在兩導(dǎo)線所在平面內(nèi)的、與a導(dǎo)線相距10cm的P點(diǎn)的磁感強(qiáng)度。
【解說】這是一個(gè)關(guān)于畢薩定律的簡單應(yīng)用。解題過程從略。
【答案】大小為8.0×10?6T ,方向在圖9-9中垂直紙面向外。
【例題2】半徑為R ,通有電流I的圓形線圈,放在磁感強(qiáng)度大小為B 、方向垂直線圈平面的勻強(qiáng)磁場中,求由于安培力而引起的線圈內(nèi)張力。
【解說】本題有兩種解法。
方法一:隔離一小段弧,對應(yīng)圓心角θ ,則弧長L = θR 。因?yàn)棣?u> →
第Ⅰ卷(選擇題 共31分)
一、單項(xiàng)選擇題.本題共5小題,每小題3分,共計(jì)15分.每小題只有一個(gè)選項(xiàng)符合題意.
1. 關(guān)于科學(xué)家和他們的貢獻(xiàn),下列說法中正確的是[來源:Www..com]
A.安培首先發(fā)現(xiàn)了電流的磁效應(yīng)
B.伽利略認(rèn)為自由落體運(yùn)動(dòng)是速度隨位移均勻變化的運(yùn)動(dòng)
C.牛頓發(fā)現(xiàn)了萬有引力定律,并計(jì)算出太陽與地球間引力的大小
D.法拉第提出了電場的觀點(diǎn),說明處于電場中電荷所受到的力是電場給予的
2.如圖為一種主動(dòng)式光控報(bào)警器原理圖,圖中R1和R2為光敏電阻,R3和R4為定值電阻.當(dāng)射向光敏電阻R1和R2的任何一束光線被遮擋時(shí),都會(huì)引起警鈴發(fā)聲,則圖中虛線框內(nèi)的電路是
A.與門 B.或門 C.或非門 D.與非門
3.如圖所示的交流電路中,理想變壓器原線圈輸入電壓為U1,輸入功率為P1,輸出功率為P2,各交流電表均為理想電表.當(dāng)滑動(dòng)變阻器R的滑動(dòng)頭向下移動(dòng)時(shí)
A.燈L變亮 B.各個(gè)電表讀數(shù)均變大
C.因?yàn)?i>U1不變,所以P1不變 D.P1變大,且始終有P1= P2
4.豎直平面內(nèi)光滑圓軌道外側(cè),一小球以某一水平速度v0從A點(diǎn)出發(fā)沿圓軌道運(yùn)動(dòng),至B點(diǎn)時(shí)脫離軌道,最終落在水平面上的C點(diǎn),不計(jì)空氣阻力.下列說法中不正確的是
A.在B點(diǎn)時(shí),小球?qū)A軌道的壓力為零
B.B到C過程,小球做勻變速運(yùn)動(dòng)
C.在A點(diǎn)時(shí),小球?qū)A軌道壓力大于其重力
D.A到B過程,小球水平方向的加速度先增加后減小
5.如圖所示,水平面上放置質(zhì)量為M的三角形斜劈,斜劈頂端安裝光滑的定滑輪,細(xì)繩跨過定滑輪分別連接質(zhì)量為m1和m2的物塊.m1在斜面上運(yùn)動(dòng),三角形斜劈保持靜止?fàn)顟B(tài).下列說法中正確的是
A.若m2向下運(yùn)動(dòng),則斜劈受到水平面向左摩擦力
B.若m1沿斜面向下加速運(yùn)動(dòng),則斜劈受到水平面向右的摩擦力
C.若m1沿斜面向下運(yùn)動(dòng),則斜劈受到水平面的支持力大于(m1+ m2+M)g
D.若m2向上運(yùn)動(dòng),則輕繩的拉力一定大于m2g
二、多項(xiàng)選擇題.本題共4小題,每小題4分,共計(jì)16分.每小題有多個(gè)選項(xiàng)符合題意.全部選對的得4分,選對但不全的得2分,錯(cuò)選或不答的得0分.
6.木星是太陽系中最大的行星,它有眾多衛(wèi)星.觀察測出:木星繞太陽作圓周運(yùn)動(dòng)的半徑為r1、 周期為T1;木星的某一衛(wèi)星繞木星作圓周運(yùn)動(dòng)的半徑為r2、 周期為T2.已知萬有引力常量為G,則根據(jù)題中給定條件
A.能求出木星的質(zhì)量
B.能求出木星與衛(wèi)星間的萬有引力
C.能求出太陽與木星間的萬有引力
D.可以斷定
7.如圖所示,xOy坐標(biāo)平面在豎直面內(nèi),x軸沿水平方向,y軸正方向豎直向上,在圖示空間內(nèi)有垂直于xOy平面的水平勻強(qiáng)磁場.一帶電小球從O點(diǎn)由靜止釋放,運(yùn)動(dòng)軌跡如圖中曲線.關(guān)于帶電小球的運(yùn)動(dòng),下列說法中正確的是
A.OAB軌跡為半圓
B.小球運(yùn)動(dòng)至最低點(diǎn)A時(shí)速度最大,且沿水平方向
C.小球在整個(gè)運(yùn)動(dòng)過程中機(jī)械能守恒
D.小球在A點(diǎn)時(shí)受到的洛倫茲力與重力大小相等
8.如圖所示,質(zhì)量為M、長為L的木板置于光滑的水平面上,一質(zhì)量為m的滑塊放置在木板左端,滑塊與木板間滑動(dòng)摩擦力大小為f,用水平的恒定拉力F作用于滑塊.當(dāng)滑塊運(yùn)動(dòng)到木板右端時(shí),木板在地面上移動(dòng)的距離為s,滑塊速度為v1,木板速度為v2,下列結(jié)論中正確的是
A.上述過程中,F做功大小為
B.其他條件不變的情況下,F越大,滑塊到達(dá)右端所用時(shí)間越長
C.其他條件不變的情況下,M越大,s越小
D.其他條件不變的情況下,f越大,滑塊與木板間產(chǎn)生的熱量越多
9.如圖所示,兩個(gè)固定的相同細(xì)環(huán)相距一定的距離,同軸放置,O1、O2分別為兩環(huán)的圓心,兩環(huán)分別帶有均勻分布的等量異種電荷.一帶正電的粒子從很遠(yuǎn)處沿軸線飛來并穿過兩環(huán).則在帶電粒子運(yùn)動(dòng)過程中
A.在O1點(diǎn)粒子加速度方向向左
B.從O1到O2過程粒子電勢能一直增加
C.軸線上O1點(diǎn)右側(cè)存在一點(diǎn),粒子在該點(diǎn)動(dòng)能最小
D.軸線上O1點(diǎn)右側(cè)、O2點(diǎn)左側(cè)都存在場強(qiáng)為零的點(diǎn),它們關(guān)于O1、O2連線中點(diǎn)對稱
第Ⅱ卷(非選擇題 共89分)
三、簡答題:本題分必做題(第lO、11題)和選做題(第12題)兩部分,共計(jì)42分.請將解答填寫在答題卡相應(yīng)的位置.
必做題
10.測定木塊與長木板之間的動(dòng)摩擦因數(shù)時(shí),采用如圖所示的裝置,圖中長木板水平固定.
(1)實(shí)驗(yàn)過程中,電火花計(jì)時(shí)器應(yīng)接在 ▲ (選填“直流”或“交流”)電源上.調(diào)整定滑輪高度,使 ▲ .
(2)已知重力加速度為g,測得木塊的質(zhì)量為M,砝碼盤和砝碼的總質(zhì)量為m,木塊的加速度為a,則木塊與長木板間動(dòng)摩擦因數(shù)μ= ▲ .
(3)如圖為木塊在水平木板上帶動(dòng)紙帶運(yùn)動(dòng)打出的一條紙帶的一部分,0、1、2、3、4、5、6為計(jì)數(shù)點(diǎn),相鄰兩計(jì)數(shù)點(diǎn)間還有4個(gè)打點(diǎn)未畫出.從紙帶上測出x1=3.20cm,x2=4.52cm,x5=8.42cm,x6=9.70cm.則木塊加速度大小a= ▲ m/s2(保留兩位有效數(shù)字).
11.為了測量某電池的電動(dòng)勢 E(約為3V)和內(nèi)阻 r,可供選擇的器材如下:
A.電流表G1(2mA 100Ω) B.電流表G2(1mA 內(nèi)阻未知)
C.電阻箱R1(0~999.9Ω) D.電阻箱R2(0~9999Ω)
E.滑動(dòng)變阻器R3(0~10Ω 1A) F.滑動(dòng)變阻器R4(0~1000Ω 10mA)
G.定值電阻R0(800Ω 0.1A) H.待測電池
I.導(dǎo)線、電鍵若干
(1)采用如圖甲所示的電路,測定電流表G2的內(nèi)阻,得到電流表G1的示數(shù)I1、電流表G2的示數(shù)I2如下表所示:
I1(mA) | 0.40 | 0.81 | 1.20 | 1.59 | 2.00 |
I2(mA) | 0.20 | 0.40 | 0.60 | 0.80 | 1.00 |
根據(jù)測量數(shù)據(jù),請?jiān)趫D乙坐標(biāo)中描點(diǎn)作出I1—I2圖線.由圖得到電流表G2的內(nèi)阻等于
▲ Ω.
(2)在現(xiàn)有器材的條件下,測量該電池電動(dòng)勢和內(nèi)阻,采用如圖丙所示的電路,圖中滑動(dòng)變阻器①應(yīng)該選用給定的器材中 ▲ ,電阻箱②選 ▲ (均填寫器材代號).
(3)根據(jù)圖丙所示電路,請?jiān)诙D中用筆畫線代替導(dǎo)線,完成實(shí)物電路的連接.
12.選做題(請從A、B和C三小題中選定兩小題作答,并在答題卡上把所選題目對應(yīng)字母后的方框涂滿涂黑.如都作答,則按A、B兩小題評分.)
A.(選修模塊3-3)(12分)
(1)下列說法中正確的是 ▲
A.液體表面層分子間距離大于液體內(nèi)部分子間距離,液體表面存在張力
B.?dāng)U散運(yùn)動(dòng)就是布朗運(yùn)動(dòng)
C.蔗糖受潮后會(huì)粘在一起,沒有確定的幾何形狀,它是非晶體
D.對任何一類與熱現(xiàn)象有關(guān)的宏觀自然過程進(jìn)行方向的說明,都可以作為熱力學(xué)第二定律的表述
(2)將1ml的純油酸加到500ml的酒精中,待均勻溶解后,用滴管取1ml油酸酒精溶液,讓其自然滴出,共200滴.現(xiàn)在讓其中一滴落到盛水的淺盤內(nèi),待油膜充分展開后,測得油膜的面積為200cm2,則估算油酸分子的大小是 ▲ m(保留一位有效數(shù)字).
(3)如圖所示,一直立的汽缸用一質(zhì)量為m的活塞封閉一定量的理想氣體,活塞橫截面積為S,汽缸內(nèi)壁光滑且缸壁是導(dǎo)熱的,開始活塞被固定,打開固定螺栓K,活塞下落,經(jīng)過足夠長時(shí)間后,活塞停在B點(diǎn),已知AB=h,大氣壓強(qiáng)為p0,重力加速度為g.
①求活塞停在B點(diǎn)時(shí)缸內(nèi)封閉氣體的壓強(qiáng);
②設(shè)周圍環(huán)境溫度保持不變,求整個(gè)過程中通過缸壁傳遞的熱量Q(一定量理想氣體的內(nèi)能僅由溫度決定).
B.(選修模塊3-4)(12分)
(1)下列說法中正確的是 ▲
A.照相機(jī)、攝影機(jī)鏡頭表面涂有增透膜,利用了光的干涉原理
B.光照射遮擋物形成的影輪廓模糊,是光的衍射現(xiàn)象
C.太陽光是偏振光
D.為了有效地發(fā)射電磁波,應(yīng)該采用長波發(fā)射
(2)甲、乙兩人站在地面上時(shí)身高都是L0, 甲、乙分別乘坐速度為0.6c和0.8c(c為光速)的飛船同向運(yùn)動(dòng),如圖所示.此時(shí)乙觀察到甲的身高L ▲ L0;若甲向乙揮手,動(dòng)作時(shí)間為t0,乙觀察到甲動(dòng)作時(shí)間為t1,則t1 ▲ t0(均選填“>”、“ =” 或“<”).
(3)x=0的質(zhì)點(diǎn)在t=0時(shí)刻開始振動(dòng),產(chǎn)生的波沿x軸正方向傳播,t1=0.14s時(shí)刻波的圖象如圖所示,質(zhì)點(diǎn)A剛好開始振動(dòng).
①求波在介質(zhì)中的傳播速度;
②求x=4m的質(zhì)點(diǎn)在0.14s內(nèi)運(yùn)動(dòng)的路程.
C.(選修模塊3-5)(12分)
(1)下列說法中正確的是 ▲
A.康普頓效應(yīng)進(jìn)一步證實(shí)了光的波動(dòng)特性
B.為了解釋黑體輻射規(guī)律,普朗克提出電磁輻射的能量是量子化的
C.經(jīng)典物理學(xué)不能解釋原子的穩(wěn)定性和原子光譜的分立特征
D.天然放射性元素衰變的快慢與化學(xué)、物理狀態(tài)有關(guān)
(2)是不穩(wěn)定的,能自發(fā)的發(fā)生衰變.
①完成衰變反應(yīng)方程 ▲ .
②衰變?yōu)?img width=40 height=25 src="http://thumb.zyjl.cn/pic1/1899/wl/3/40403.gif" >,經(jīng)過 ▲ 次α衰變, ▲ 次β衰變.
(3)1919年,盧瑟福用α粒子轟擊氮核發(fā)現(xiàn)質(zhì)子.科學(xué)研究表明其核反應(yīng)過程是:α粒子轟擊靜止的氮核后形成了不穩(wěn)定的復(fù)核,復(fù)核發(fā)生衰變放出質(zhì)子,變成氧核.設(shè)α粒子質(zhì)量為m1,初速度為v0,氮核質(zhì)量為m2,質(zhì)子質(zhì)量為m0, 氧核的質(zhì)量為m3,不考慮相對論效應(yīng).
①α粒子轟擊氮核形成不穩(wěn)定復(fù)核的瞬間,復(fù)核的速度為多大?
②求此過程中釋放的核能.
四、計(jì)算題:本題共3小題,共計(jì)47分.解答時(shí)請寫出必要的文字說明、方程式和重要的演算步驟,只寫出最后答案的不能得分,有數(shù)值計(jì)算的題,答案中必須明確寫出數(shù)值和單位.
13.如圖所示,一質(zhì)量為m的氫氣球用細(xì)繩拴在地面上,地面上空風(fēng)速水平且恒為v0,球靜止時(shí)繩與水平方向夾角為α.某時(shí)刻繩突然斷裂,氫氣球飛走.已知?dú)錃馇蛟诳諝庵羞\(yùn)動(dòng)時(shí)所受到的阻力f正比于其相對空氣的速度v,可以表示為f=kv(k為已知的常數(shù)).則
(1)氫氣球受到的浮力為多大?
(2)繩斷裂瞬間,氫氣球加速度為多大?
(3)一段時(shí)間后氫氣球在空中做勻速直線運(yùn)動(dòng),其水平方向上的速度與風(fēng)速v0相等,求此時(shí)氣球速度大。ㄔO(shè)空氣密度不發(fā)生變化,重力加速度為g).
14.如圖所示,光滑絕緣水平面上放置一均勻?qū)w制成的正方形線框abcd,線框質(zhì)量為m,電阻為R,邊長為L.有一方向豎直向下的有界磁場,磁場的磁感應(yīng)強(qiáng)度為B,磁場區(qū)寬度大于L,左邊界與ab邊平行.線框在水平向右的拉力作用下垂直于邊界線穿過磁場區(qū).
(1)若線框以速度v勻速穿過磁場區(qū),求線框在離開磁場時(shí)ab兩點(diǎn)間的電勢差;
(2)若線框從靜止開始以恒定的加速度a運(yùn)動(dòng),經(jīng)過t1時(shí)間ab邊開始進(jìn)入磁場,求cd邊將要進(jìn)入磁場時(shí)刻回路的電功率;
(3)若線框以初速度v0進(jìn)入磁場,且拉力的功率恒為P0.經(jīng)過時(shí)間T,cd邊進(jìn)入磁場,此過程中回路產(chǎn)生的電熱為Q.后來ab邊剛穿出磁場時(shí),線框速度也為v0,求線框穿過磁場所用的時(shí)間t.
15.如圖所示,有界勻強(qiáng)磁場的磁感應(yīng)強(qiáng)度為B,方向垂直紙面向里,MN為其左邊界,磁場中放置一半徑為R的圓柱形金屬圓筒,圓心O到MN的距離OO1=2R,圓筒軸線與磁場平行.圓筒用導(dǎo)線通過一個(gè)電阻r0接地,最初金屬圓筒不帶電.現(xiàn)有范圍足夠大的平行電子束以速度v0從很遠(yuǎn)處沿垂直于左邊界MN向右射入磁場區(qū),已知電子質(zhì)量為m,電量為e.
(1)若電子初速度滿足,則在最初圓筒上沒有帶電時(shí),能夠打到圓筒上的電子對應(yīng)MN邊界上O1兩側(cè)的范圍是多大?
(2)當(dāng)圓筒上電量達(dá)到相對穩(wěn)定時(shí),測量得到通過電阻r0的電流恒為I,忽略運(yùn)動(dòng)電子間的相互作用,求此時(shí)金屬圓筒的電勢φ和電子到達(dá)圓筒時(shí)速度v(取無窮遠(yuǎn)處或大地電勢為零).
(3)在(2)的情況下,求金屬圓筒的發(fā)熱功率.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com