12.已知滿足.則函數(shù)的最小值是 . 查看更多

 

題目列表(包括答案和解析)

(08年重慶一中一模理)已知滿足,則函數(shù)的最小值是__________。

查看答案和解析>>

定義:若數(shù)列滿足,則稱數(shù)列為“平方遞推數(shù)列”。已知數(shù)列中,,點在函數(shù)的圖像上,其中為正整數(shù)。

  (1)證明:數(shù)列是“平方遞推數(shù)列”,且數(shù)列為等比數(shù)列。

  (2)設(1)中“平方遞推數(shù)列”的前項之積為,即,求數(shù)列的通項及關于的表達式。

(3)記,求數(shù)列的前項之和,并求使的最小值。

查看答案和解析>>

定義:若數(shù)列滿足,則稱數(shù)列為“平方數(shù)列”。已知數(shù)列 中,,點在函數(shù)的圖像上,其中為正整數(shù)。

⑴證明:數(shù)列是“平方數(shù)列”,且數(shù)列為等比數(shù)列。

⑵設⑴中“平方數(shù)列”的前項之積為,即,求數(shù)列的通項及關于的表達式。

⑶記,求數(shù)列的前項之和,并求使的最小值。

查看答案和解析>>

定義:若數(shù)列滿足,則稱數(shù)列為“平方遞推數(shù)列”。已知數(shù)列中,,點在函數(shù)的圖像上,其中為正整數(shù)。
(1)證明:數(shù)列是“平方遞推數(shù)列”,且數(shù)列為等比數(shù)列。
(2)設(1)中“平方遞推數(shù)列”的前項之積為,即,求數(shù)列的通項及關于的表達式。
(3)記,求數(shù)列的前項之和,并求使的最小值。

查看答案和解析>>

已知實數(shù)x、y滿足,則目標函數(shù)z=x-2y的最小值是(    )。

查看答案和解析>>

一、DDBCD  CABCA

二、11.1;       12.;     13.           14.;    15.;

16.

三.解答題(本大題共6小題,共76分)

17.解:(1)法一:由題可得;

法二:由題,

,從而

法三:由題,解得,

,從而。

(2),令,

單調(diào)遞減,

從而的值域為。

18.解:(1)的可能取值為0,1,2,3,4,

,

,

因此隨機變量的分布列為下表所示;

0

1

2

3

4

(2)由⑴得:,

19.法一:(1)連接,設,則

因為,所以,故,從而,

。

又因為,

所以,當且僅當取等號。

此時邊的中點,邊的中點。

故當邊的中點時,的長度最小,其值為

(2)連接,因為此時分別為的中點,

,所以均為直角三角形,

從而,所以即為直線與平面所成的角。

因為,所以即為所求;

(3)因,又,所以。

,故三棱錐的表面積為

。

因為三棱錐的體積,

所以。

法二:(1)因,故。

,則。

所以,

當且僅當取等號。此時邊的中點。

故當的中點時,的長度最小,其值為;

(2)因,又,所以。

點到平面的距離為

,故,解得

,故;

(3)同“法一”。

法三:(1)如圖,以為原點建立空間直角坐標系,設,則,

所以,當且僅當取等號。

此時邊的中點,邊的中點。

故當邊的中點時,的長度最小,其值為;

(2)設為面的法向量,因,

。取,得。

又因,故。

因此,從而

所以;

(3)由題意可設為三棱錐的內(nèi)切球球心,

,可得。

與(2)同法可得平面的一個法向量

,故,

解得。顯然,故。

20.解:(1)當時,。令,

故當單調(diào)遞增;

單調(diào)遞減。

所以函數(shù)的單調(diào)遞增區(qū)間為,

單調(diào)遞減區(qū)間為;

(2)法一:因,故。

,

要使對滿足的一切成立,則,

解得;

法二:,故。

可解得

因為單調(diào)遞減,因此單調(diào)遞增,故。設,

,因為,

所以,從而單調(diào)遞減,

。因此,即

(3)因為,所以

對一切恒成立。

,令,

。因為,所以,

單調(diào)遞增,有。

因此,從而。

所以

21.解:(1)設,則由題,

,故。

又根據(jù)可得,

,代入可得,

解得(舍負)。故的方程為;

(2)法一:設,代入,

從而

因此。

法二:顯然點是拋物線的焦點,點是其準線上一點。

的中點,過分別作的垂線,垂足分別為

。

因此以為直徑的圓與準線切(于點)。

重合,則。否則點外,因此。

綜上知。

22.證明:(1)因,故。

顯然,因此數(shù)列是以為首項,以2為公比的等比數(shù)列;

(2)由⑴知,解得;

(3)因為

所以。

(當且僅當時取等號),

。

綜上可得。(亦可用數(shù)學歸納法)

 


同步練習冊答案