重要公式: ⑴負數與零沒有對數, ⑵. ⑶對數恒等式 查看更多

 

題目列表(包括答案和解析)

對數的性質與運算法則(以下標中a>0且a≠1,m、n>0,b>0且b≠1)
(1)①loga1=
 
②logaa=
 
③負數與零沒有對數
(2)①logaMN=
 
.  ②loga
MN
=
 
.  ③logambn=
 

(3)①aloga N=
 
.       ②lg2+lg5=
 

查看答案和解析>>

已知離心率為
3
2
的橢圓C1的頂點A1,A2恰好是雙曲線
x2
3
-y2=1
的左右焦點,點P是橢圓上不同于A1,A2的任意一點,設直線PA1,PA2的斜率分別為k1,k2
(Ⅰ)求橢圓C1的標準方程;
(Ⅱ)試判斷k1•k2的值是否與點P的位置有關,并證明你的結論;
(Ⅲ)當k1=
1
2
時,圓C2:x2+y2-2mx=0被直線PA2截得弦長為
4
5
5
,求實數m的值.
設計意圖:考察直線上兩點的斜率公式、直線與圓相交、垂徑定理、雙曲線與橢圓的幾何性質等知識,考察學生用待定系數法求橢圓方程等解析幾何的基本思想與運算能力、探究能力和推理能力.第(Ⅱ)改編自人教社選修2-1教材P39例3.

查看答案和解析>>

已知離心率為的橢圓C1的頂點A1,A2恰好是雙曲線的左右焦點,點P是橢圓上不同于A1,A2的任意一點,設直線PA1,PA2的斜率分別為k1,k2
(Ⅰ)求橢圓C1的標準方程;
(Ⅱ)試判斷k1•k2的值是否與點P的位置有關,并證明你的結論;
(Ⅲ)當時,圓C2:x2+y2-2mx=0被直線PA2截得弦長為,求實數m的值.
設計意圖:考察直線上兩點的斜率公式、直線與圓相交、垂徑定理、雙曲線與橢圓的幾何性質等知識,考察學生用待定系數法求橢圓方程等解析幾何的基本思想與運算能力、探究能力和推理能力.第(Ⅱ)改編自人教社選修2-1教材P39例3.

查看答案和解析>>

已知離心率為的橢圓C1的頂點A1,A2恰好是雙曲線的左右焦點,點P是橢圓上不同于A1,A2的任意一點,設直線PA1,PA2的斜率分別為k1,k2
(Ⅰ)求橢圓C1的標準方程;
(Ⅱ)試判斷k1•k2的值是否與點P的位置有關,并證明你的結論;
(Ⅲ)當時,圓C2:x2+y2-2mx=0被直線PA2截得弦長為,求實數m的值.
設計意圖:考察直線上兩點的斜率公式、直線與圓相交、垂徑定理、雙曲線與橢圓的幾何性質等知識,考察學生用待定系數法求橢圓方程等解析幾何的基本思想與運算能力、探究能力和推理能力.第(Ⅱ)改編自人教社選修2-1教材P39例3.

查看答案和解析>>

(本小題滿分14分)已知數列及函數f(x)=,,對于任意均有   ⑴試計算的值.⑵若,求數列的通項公式.⑶試比較的大小.

查看答案和解析>>


同步練習冊答案