(Ⅰ)證明:平面平面, 查看更多

 

題目列表(包括答案和解析)

平面直角坐標系中,O為坐標原點,已知兩點M(1,-3)、N(5,1),若點C滿足
OC
=t
OM
+(1-t)
ON
(t∈R),點C的軌跡與拋物線:y2=4x交于A、B兩點.
(Ⅰ)求證:
OA
OB
;
(Ⅱ)在x軸上是否存在一點P(m,0)(m∈R),使得過P點的直線交拋物線于D、E兩點,并以該弦DE為直徑的圓都過原點.若存在,請求出m的值及圓心的軌跡方程;若不存在,請說明理由.

查看答案和解析>>

平面四邊形ABED中,O在線段AD上,且OA=1,OD=2,△OAB,△ODE都是正三角形.將四邊形ABED沿AD翻折后,使點B落在點C位置,點E落在點F位置,且F點在平面ABED上的射影恰為線段OD的中點(即垂線段的垂足點),所得多面體ABEDFC,如圖所示
(1)求棱錐F-OED的體積;             
(2)證明:BC∥EF.

查看答案和解析>>

平面ABDE⊥平面ABC,AC⊥BC,AC=BC=4,四邊形ABDE是直角梯形,BD∥AE,BD⊥BA,AE=2BD=4,O、M分別為CE、AB的中點.
(Ⅰ) 證明:OD∥平面ABC;
(Ⅱ)能否在EM上找一點N,使得ON⊥平面ABDE?若能,請指出點N的位置,并加以證明;若不能,請說明理由.

查看答案和解析>>

平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四邊形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2
,O、M分別為CE、AB的中點.
(I)求證:OD∥平面ABC;
(II)能否在EM上找一點N,使得ON⊥平面ABDE?若能,請指出點N的位置,并加以證明;若不能,請說明理由.

查看答案和解析>>

()(本小題滿分12分)

如圖,四棱錐S-ABCD 的底面是正方形,每條側(cè)棱的長都是地面邊長的倍,P為側(cè)棱SD上的點。   

(Ⅰ)求證:ACSD;

(Ⅱ)若SD平面PAC,求二面角P-AC-D的大小

(Ⅲ)在(Ⅱ)的條件下,側(cè)棱SC上是否存在一點E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,試說明理由。

查看答案和解析>>

 

一.選擇題:本大題共12小題,每小題5分,共60分。

(1)A       (2)B        (3)B      (4)A    (5)D       (6)D 

(7)C       (8)C        (9)A     (10)C    (11)A      (12)B

 

二.填空題:本大題共4小題,每小題5分,共20分。

(13)6ec8aac122bd4f6e        (14)2          (15)6ec8aac122bd4f6e       (16)44

三.解答題:本大題共6小題,共70分,解答應寫出文字說明,證明過程或演算步驟。

(17)(本小題滿分10分)

(Ⅰ)解法一:由正弦定理得6ec8aac122bd4f6e.

故      6ec8aac122bd4f6e,

又      6ec8aac122bd4f6e,

故      6ec8aac122bd4f6e,

即      6ec8aac122bd4f6e,

故      6ec8aac122bd4f6e.

因為    6ec8aac122bd4f6e,

故      6ec8aac122bd4f6e,

      又      6ec8aac122bd4f6e為三角形的內(nèi)角,

所以    6ec8aac122bd4f6e.                    ………………………5分

解法二:由余弦定理得  6ec8aac122bd4f6e.

      將上式代入6ec8aac122bd4f6e    整理得6ec8aac122bd4f6e

      故      6ec8aac122bd4f6e,  

又      6ec8aac122bd4f6e為三角形內(nèi)角,

所以    6ec8aac122bd4f6e.                    ………………………5分

(Ⅱ)解:因為6ec8aac122bd4f6e

故      6ec8aac122bd4f6e,

由已知  6ec8aac122bd4f6e

6ec8aac122bd4f6e 

又因為  6ec8aac122bd4f6e.

得      6ec8aac122bd4f6e,

所以    6ec8aac122bd4f6e,

解得    6ec8aac122bd4f6e.    ………………………………………………10分

 

6ec8aac122bd4f6e(18)(本小題滿分12分)

 

(Ⅰ)證明:

             ∵6ec8aac122bd4f6e6ec8aac122bd4f6e,6ec8aac122bd4f6e6ec8aac122bd4f6e,

             ∴6ec8aac122bd4f6e

             又∵底面6ec8aac122bd4f6e是正方形,

       ∴6ec8aac122bd4f6e

             又∵6ec8aac122bd4f6e,

       ∴6ec8aac122bd4f6e6ec8aac122bd4f6e,

       又∵6ec8aac122bd4f6e6ec8aac122bd4f6e,

       ∴平面6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e.    ………………………………………6分

(Ⅱ)解法一:如圖建立空間直角坐標系6ec8aac122bd4f6e

設(shè)6ec8aac122bd4f6e,則6ec8aac122bd4f6e,在6ec8aac122bd4f6e中,6ec8aac122bd4f6e.

6ec8aac122bd4f6e、6ec8aac122bd4f6e6ec8aac122bd4f6e、6ec8aac122bd4f6e、6ec8aac122bd4f6e、6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e的中點,6ec8aac122bd4f6e,

6ec8aac122bd4f6e

        設(shè)6ec8aac122bd4f6e是平面6ec8aac122bd4f6e的一個法向量.

6ec8aac122bd4f6e則由6ec8aac122bd4f6e 可求得6ec8aac122bd4f6e.

由(Ⅰ)知6ec8aac122bd4f6e是平面6ec8aac122bd4f6e的一個法向量,

6ec8aac122bd4f6e,

6ec8aac122bd4f6e,即6ec8aac122bd4f6e.

∴二面角6ec8aac122bd4f6e的大小為6ec8aac122bd4f6e. ………………………………………12分

  解法二:

6ec8aac122bd4f6e         設(shè)6ec8aac122bd4f6e,則6ec8aac122bd4f6e,

6ec8aac122bd4f6e中,6ec8aac122bd4f6e.

設(shè)6ec8aac122bd4f6e,連接6ec8aac122bd4f6e,過6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e

連結(jié)6ec8aac122bd4f6e,由(Ⅰ)知6ec8aac122bd4f6e6ec8aac122bd4f6e.

6ec8aac122bd4f6e在面6ec8aac122bd4f6e上的射影為6ec8aac122bd4f6e,

6ec8aac122bd4f6e

6ec8aac122bd4f6e為二面角6ec8aac122bd4f6e的平面角.

6ec8aac122bd4f6e中,6ec8aac122bd4f6e,6ec8aac122bd4f6e,6ec8aac122bd4f6e

6ec8aac122bd4f6e,

6ec8aac122bd4f6e.

6ec8aac122bd4f6e.

即二面角6ec8aac122bd4f6e的大小為6ec8aac122bd4f6e. …………………………………12分

(19)(本小題滿分12分)

解:(Ⅰ)設(shè)取到的4個球全是白球的概率6ec8aac122bd4f6e,

6ec8aac122bd4f6e.          …………………………………6分

(Ⅱ)設(shè)取到的4個球中紅球個數(shù)不少于白球個數(shù)的概率6ec8aac122bd4f6e,

6ec8aac122bd4f6e. ………………12分

(20)(本小題滿分12分)

解:(I)設(shè)等比數(shù)列6ec8aac122bd4f6e的首項為6ec8aac122bd4f6e,公比為6ec8aac122bd4f6e,

依題意,有6ec8aac122bd4f6e,

代入6ec8aac122bd4f6e, 得6ec8aac122bd4f6e

6ec8aac122bd4f6e.               …………………………………2分

6ec8aac122bd4f6e解之得6ec8aac122bd4f6e6ec8aac122bd4f6e  …………………6分

6ec8aac122bd4f6e6ec8aac122bd4f6e              …………………………………8分

(II)又6ec8aac122bd4f6e單調(diào)遞減,∴6ec8aac122bd4f6e.   …………………………………9分

6ec8aac122bd4f6e. …………………………………10分

6ec8aac122bd4f6e,即6ec8aac122bd4f6e,6ec8aac122bd4f6e,

6ec8aac122bd4f6e

故使6ec8aac122bd4f6e成立的正整數(shù)n的最小值為8.………………………12分

(21)(本小題滿分12分)

(Ⅰ)解:設(shè)雙曲線方程為6ec8aac122bd4f6e,6ec8aac122bd4f6e,

6ec8aac122bd4f6e,6ec8aac122bd4f6e及勾股定理得6ec8aac122bd4f6e,

由雙曲線定義得 6ec8aac122bd4f6e

6ec8aac122bd4f6e.               ………………………………………5分

(Ⅱ)6ec8aac122bd4f6e,6ec8aac122bd4f6e6ec8aac122bd4f6e,雙曲線的兩漸近線方程為6ec8aac122bd4f6e

由題意,設(shè)6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e,6ec8aac122bd4f6e6ec8aac122bd4f6e軸的交點為6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e交于點6ec8aac122bd4f6e,6ec8aac122bd4f6e6ec8aac122bd4f6e交于點6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6e;由6ec8aac122bd4f6e6ec8aac122bd4f6e,

6ec8aac122bd4f6e,

6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6e,

故雙曲線方程為6ec8aac122bd4f6e.         ………………………………12分

(22)(本小題滿分12分)

解:(Ⅰ)6ec8aac122bd4f6e,

6ec8aac122bd4f6e

又因為函數(shù)6ec8aac122bd4f6e6ec8aac122bd4f6e上為增函數(shù),

  6ec8aac122bd4f6e6ec8aac122bd4f6e上恒成立,等價于

  6ec8aac122bd4f6e6ec8aac122bd4f6e上恒成立.

6ec8aac122bd4f6e,

故當且僅當6ec8aac122bd4f6e時取等號,而6ec8aac122bd4f6e,

  6ec8aac122bd4f6e的最小值為6ec8aac122bd4f6e.         ………………………………………6分

(Ⅱ)由已知得:函數(shù)6ec8aac122bd4f6e為奇函數(shù),

  6ec8aac122bd4f6e, 6ec8aac122bd4f6e,  ………………………………7分

6ec8aac122bd4f6e.

6ec8aac122bd4f6e切點為6ec8aac122bd4f6e,其中6ec8aac122bd4f6e,

則切線6ec8aac122bd4f6e的方程為:6ec8aac122bd4f6e   ……………………8分

6ec8aac122bd4f6e,

6ec8aac122bd4f6e.

6ec8aac122bd4f6e,

6ec8aac122bd4f6e,

6ec8aac122bd4f6e,

6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6e,由題意知,6ec8aac122bd4f6e

從而6ec8aac122bd4f6e.

6ec8aac122bd4f6e,

6ec8aac122bd4f6e,

6ec8aac122bd4f6e.                    ………………………………………12分

 

 

 

本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!


同步練習冊答案