114.在用圓錐曲線與直線聯(lián)立求解時(shí).消元后得到的方程中要注意:二次項(xiàng)的系數(shù)是否為零?判別式的限制.(求交點(diǎn).弦長.中點(diǎn).斜率.對稱.存在性問題都在下進(jìn)行). 查看更多

 

題目列表(包括答案和解析)

在等差數(shù)列中,,,其中是數(shù)列的前項(xiàng)之和,曲線的方程是,直線的方程是

求數(shù)列的通項(xiàng)公式;

當(dāng)直線與曲線相交于不同的兩點(diǎn),時(shí),令,

的最小值;

對于直線和直線外的一點(diǎn)P,用“上的點(diǎn)與點(diǎn)P距離的最小值”定義點(diǎn)P到直線的距離與原有的點(diǎn)到直線距離的概念是等價(jià)的,若曲線與直線不相交,試以類似的方式給出一條曲線與直線間“距離”的定義,并依照給出的定義,在中自行選定一個(gè)橢圓,求出該橢圓與直線的“距離”.

查看答案和解析>>

已知函數(shù)f(x)=ln(ex+1)-ax(a∈R).
①若曲線y=f(x)在x=0處與直線x+y=b相切,求a,b的值;
②設(shè)x∈[-ln2,0]時(shí),f(x)在x=0處取得最大值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

精英家教網(wǎng)在直角坐標(biāo)系XOY中,已知點(diǎn)A(1,0),B(-1,0),C(0,1),D(0,-1),動(dòng)點(diǎn)M滿足
AM
BM
=m(
CM
DM
-|
OA
-
OM
|),其中m是參數(shù)(m∈R)
(I)求動(dòng)點(diǎn)M的軌跡方程,并根據(jù)m的取值討論方程所表示的曲線類型;
(II)當(dāng)動(dòng)點(diǎn)M的軌跡表示橢圓或雙曲線,且曲線與直線l:y=x+2交于不同的兩點(diǎn)時(shí),求該曲線的離心率的取值范圍.

查看答案和解析>>

精英家教網(wǎng)已知曲線y=x2-2x+3與直線y=x+3相交于點(diǎn)P(0,3)、Q(3,6)兩點(diǎn).
(1)分別求出曲線在交點(diǎn)的切線的斜率;
(2)求出曲線與直線所圍成的圖形的面積.

查看答案和解析>>

我們把正切函數(shù)在整個(gè)定義域內(nèi)的圖象看作一組“平行曲線”,而“平行曲線”具有性質(zhì):任意兩條平行直線與兩條相鄰的“平行曲線”相交,被截得的線段長度相等.已知函數(shù)f(x)=tan(ωx+
π
3
)(ω>0)
圖象中的兩條相鄰“平行曲線”與直線y=2013相交于A,B兩點(diǎn),且|AB|=2,f(2)=(  )
A、-1
B、-
3
C、
3
D、-
3
3

查看答案和解析>>


同步練習(xí)冊答案