119.(理)利用空間向量解決立體幾何的步驟是什么?運(yùn)用空間向量的坐標(biāo)運(yùn)算解決幾何問題時(shí).一般步驟為:(1)建立適當(dāng)建立空間直角坐標(biāo)系,(2)計(jì)算出相關(guān)點(diǎn)的坐標(biāo),結(jié)合公式進(jìn)行論證.計(jì)算,(5)轉(zhuǎn)化為幾何結(jié)論.在建立空間直角坐標(biāo)系時(shí).必須要牢牢抓住相交于同一點(diǎn)的兩兩垂直的三條直線.要在題目中所給出的垂直關(guān)系(如線線垂直.線面垂直與面面垂直等).同時(shí)要注意所建立的直角坐標(biāo)系必須是右手直角坐標(biāo)系.在此坐標(biāo)系下.點(diǎn)的坐標(biāo)的寫出.可根據(jù)圖中有關(guān)線段的長度.也可以根據(jù)向量的運(yùn)算. 查看更多

 

題目列表(包括答案和解析)

如圖,在四棱錐O-ABCD中,底面ABCD是邊長為1的正方形,OA⊥底面ABCD,OA=2,M為OA的中點(diǎn),N為BC中點(diǎn),以A為原點(diǎn),建立適當(dāng)?shù)目臻g直角坐標(biāo)系,利用空間向量解答以下問題
(1)證明:直線BD⊥OC
(2)證明:直線MN∥平面OCD
(3)求異面直線AB與OC所成角的余弦值.

查看答案和解析>>

如圖,四邊形ABCD是矩形,PA⊥平面ABCD,AP=AB=2,BC=2
2
,E,F(xiàn)分別是AD,PC的中點(diǎn).建立適當(dāng)?shù)目臻g坐標(biāo)系,利用空間向量解答以下問題:
(Ⅰ)證明:PC⊥平面BEF;
(Ⅱ)求平面BEF與平面BAP夾角的大。

查看答案和解析>>

[必做題]利用空間向量的方法解決下列問題:在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是BB1,DC的中點(diǎn).
(1)求AE與D1F所成的角;
(2)證明AE⊥面A1D1F.

查看答案和解析>>

精英家教網(wǎng)(理科做)如圖所示已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD且PA=1.建立適當(dāng)?shù)目臻g坐標(biāo)系,利用空間向量求解下列問題:
(1)求點(diǎn)P、B、D的坐標(biāo);
(2)當(dāng)實(shí)數(shù)a在什么范圍內(nèi)取值時(shí),BC邊上存在點(diǎn)Q,使得PQ⊥QD;
(3)當(dāng)BC邊上有且僅有一個(gè)Q點(diǎn),使得時(shí)PQ⊥QD,求二面角Q-PD-A的余弦值.

查看答案和解析>>

(理科做)如圖所示已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD且PA=1.建立適當(dāng)?shù)目臻g坐標(biāo)系,利用空間向量求解下列問題:
(1)求點(diǎn)P、B、D的坐標(biāo);
(2)當(dāng)實(shí)數(shù)a在什么范圍內(nèi)取值時(shí),BC邊上存在點(diǎn)Q,使得PQ⊥QD;
(3)當(dāng)BC邊上有且僅有一個(gè)Q點(diǎn),使得時(shí)PQ⊥QD,求二面角Q-PD-A的余弦值.

查看答案和解析>>


同步練習(xí)冊(cè)答案