150.解答信息型問題時.透徹理解問題中的新信息.這是準確解題的前提. 查看更多

 

題目列表(包括答案和解析)

(2006•靜安區(qū)二模)某種洗衣機在洗滌衣服時,需經(jīng)過進水、清洗、排水、脫水四個連續(xù)的過程.假設(shè)進水時水量勻速增加,清洗時水量保持不變.已知進水時間為4分鐘,清洗時間為12分鐘,排水時間為2分鐘,脫水時間為2分鐘.洗衣機中的水量y(升)與時間x(分鐘)之間的關(guān)系如下表所示:
x 0 2 4 16 16.5 17 18
y 0 20 40 40 29.5 20 2
請根據(jù)表中提供的信息解答下列問題:
(1)試寫出當x∈[0,16]時y關(guān)于x的函數(shù)解析式,并畫出該函數(shù)的圖象;
(2)根據(jù)排水階段的2分鐘點(x,y)的分布情況,可選用y=
a
x
+b
或y=c(x-20)2+d(其中a、b、c、d為常數(shù)),作為在排水階段的2分鐘內(nèi)水量y與時間x之間關(guān)系的模擬函數(shù).試分別求出這兩個函數(shù)的解析式;
(3)請問(2)中求出的兩個函數(shù)哪一個更接近實際情況?(寫出必要的步驟)

查看答案和解析>>

精英家教網(wǎng)小文家與學校相距1000米.某天小文上學時忘了帶一本書,走了一段時間才想起,于是返回家拿書,然后加快速度趕到學校.下圖是小文與家的距離y(米)關(guān)于時間x(分鐘)的函數(shù)圖象.請你根據(jù)圖象中給出的信息,解答下列問題:
(1)小文走了多遠才返回家拿書?
(2)求線段AB所在直線的函數(shù)解析式;
(3)當x=8分鐘時,求小文與家的距離.

查看答案和解析>>

學數(shù)學,其實是要使人聰明,使人的思維更加縝密,在美國廣為流傳的一道數(shù)學題目是:老板給你兩個加工資的方案.一是每年年末加一千元;二是每半年結(jié)束時加300元.請選擇一種.一般不擅長數(shù)學的人很容易選擇前者,因為一年加一千元總比兩個半年共加600元要多.其實,由于工資累計的,時間稍長,往往第二種方案更有利.例如在第二年的年末,依第一種方案可以加得1000+2000=3000元,而第二種方案在第一年加得300+600=900元,第二年加得900+1200=2100元,總數(shù)也是900+2100=3000元.但到了第三年,第一種方案可以得到1000+2000+3000=6000元,第二種方案可以得到300+600+900+1200+1500+1800=6300元,比第一方案多了300元.第四年,第五年會更多.因此,你若會在公司干三年以上,則應(yīng)選擇第二種方案.
根據(jù)以上材料,解答以下問題:
(1)如果在該公司干10年,問選擇第二方案比選擇第一方案多加薪多少元?
(2)如果第二方案中得每半年加300元改成每半年加 a元,問 a取何值時,選擇第二方案總是比選擇第一方案多加薪?

查看答案和解析>>

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f′′(x)是函數(shù)y=f(x)的導函數(shù)y=f′(x)的導數(shù),若f′′(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.現(xiàn)已知f(x)=x3-3x2+2x-2,請解答下列問題:
(Ⅰ)求函數(shù)f(x)的“拐點”A的坐標;
(Ⅱ)求證f(x)的圖象關(guān)于“拐點”A 對稱;并寫出對于任意的三次函數(shù)都成立的有關(guān)“拐點”的一個結(jié)論(此結(jié)論不要求證明);
(Ⅲ)若另一個三次函數(shù)G(x)的“拐點”為B(0,1),且一次項系數(shù)為0,當x1>0,x2>0(x1≠x2)時,試比較
G(x1)+G(x2)
2
G(
x1+x2
2
)
的大�。�

查看答案和解析>>

15、2010年湛江市某校為了了解400名學生體育加試成績,從中抽取了部分學生的成績(滿分為40分,成績均為整數(shù)).繪制了頻數(shù)分布表與頻數(shù)分布直方圖(如圖所示),請結(jié)合圖表信息解答下列問題.

(1)補全頻數(shù)分布表與頻數(shù)分布直方圖;
(2)如果成績在31分以上(含31分)的同學屬于優(yōu)良,請你估計全校約有多少人達到優(yōu)良水平;
(3)加試結(jié)束后,校長說:“2008年,初一測試時,優(yōu)良人數(shù)只有90人,經(jīng)過兩年的努力,才有今天的成績….”假設(shè)每年優(yōu)良人數(shù)增長速度一樣,請你求出每年的平均增長率(結(jié)果精確到1%).

查看答案和解析>>


同步練習冊答案