等差.等比數(shù)列模型的應用題, 查看更多

 

題目列表(包括答案和解析)

(2012•桂林一模)對數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分數(shù)列,其中△an=an+1-an(n∈N*).規(guī)定{△2an}為{an}的二階差分數(shù)列,其中△2an=△an+1-△an
(Ⅰ)已知數(shù)列{an}的通項公式an=n2+n(n∈N*),試判斷{△an},{△2an}是否為等差或等比數(shù)列,并說明理由;
(Ⅱ)若數(shù)列{an}首項a1=1,且滿足2an-△an+1+an=-2n(n∈N*),求數(shù)列{an}的通項公式.

查看答案和解析>>

已知數(shù)列{an},{bn}分別為等差和等比數(shù)列,且a1=1,d>0,a2=b2,a5=b3,a14=b4(n∈N*).
(Ⅰ)求{an},{bn}的通項公式;
(Ⅱ)設(shè)cn=an•bn,求數(shù)列{cn}的前n項和.

查看答案和解析>>

7、已知實數(shù)a、b、c滿足2a=3,2b=6,2c=12,那么實數(shù)a、b、c是(  )

查看答案和解析>>

(2009•紅橋區(qū)二模)三個互不相等的實數(shù)a、b、c成等差數(shù)列,滿足2a=p,2b=q,2c=r,那么實數(shù)p、q、r是( 。

查看答案和解析>>

8、對數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分數(shù)列,其中△an=an+1-an(n∈N).對自然數(shù)k,規(guī)定{△kan}為{an}的k階差分數(shù)列,其中△kan=△k-1an+1-△k-1an=△(△k-1an).
(1)已知數(shù)列{an}的通項公式an=n2+n(n∈N),,試判斷{△an},{△2an}是否為等差或等比數(shù)列,為什么?
(2)若數(shù)列{an}首項a1=1,且滿足△2an-△an+1+an=-2n(n∈N),求數(shù)列{an}的通項公式.
(3)(理)對(2)中數(shù)列{an},是否存在等差數(shù)列{bn},使得b1Cn1+b2Cn2+…+bnCnn=an對一切自然n∈N都成立?若存在,求數(shù)列{bn}的通項公式;若不存在,則請說明理由.

查看答案和解析>>


同步練習冊答案