題目列表(包括答案和解析)
(09年泗陽中學(xué)模擬六)(15分
如圖,某小區(qū)準(zhǔn)備在一直角圍墻內(nèi)的空地上植造一塊“綠地”,其中長為定值, 長可根據(jù)需要進(jìn)行調(diào)節(jié)(足夠長).現(xiàn)規(guī)劃在的內(nèi)接正方形內(nèi)種花,其余地方種草,且把種草的面積與種花的面積的比值稱為“草花比”.
(Ⅰ)設(shè),將表示成的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)為多長時,有最小值?最小值是多少?
(本題滿分15分) 如圖,四邊形中,為正三角形,,,與交于點.將沿邊折起,使點至點,已知與平面所成的角為,且點在平面內(nèi)的射影落在內(nèi).
(Ⅰ)求證:平面;
(Ⅱ)若已知二面角的余弦值為,求的大小.
(本小題滿分15分)
如圖,在半徑為的圓形(為圓心)鋁皮上截取一塊矩形材料,其中點在圓上,點、在兩半徑上,現(xiàn)將此矩形鋁皮卷成一個以為母線的圓柱形罐子的側(cè)面(不計剪裁和拼接損耗),設(shè)矩形的邊長,圓柱的體積為.
(1)寫出體積關(guān)于的函數(shù)關(guān)系式,并指出定義域;
(2)當(dāng)為何值時,才能使做出的圓柱形罐子體積最大?最大體積是多少?
(本題滿分15分) 如圖所示,在等腰梯形中,,,為中點.將沿折起至,使得平面平面,分別為的中點.
(Ⅰ) 求證:面;
(Ⅱ) 求二面角的余弦值.
(本大題共15分) 如圖,F(xiàn)是橢圓的一個焦點,A,B是橢圓的兩個頂點,橢圓的離心率為,點C在x軸上,
,B、C、F三點確定的圓M恰好與
直線相切.(1)求橢圓的方程;
(2)過點A的直線與圓M交于P、Q兩點,
且,求直線的方程.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com