21.已知(a2+1)n展開式中的各項系數(shù)之和等于(x2+)5的展開式的常數(shù)項.而(a2+1)n的展開式的系數(shù)最大的項等于54.求a的值. 解:由(x2+)5.得 Tr+1=C(x2)5-r()r=()5-r·C·x.令Tr+1為常數(shù)項.則20-5r=0. 所以r=4.常數(shù)項T5=C×=16. 又(a2+1)n展開式中的各項系數(shù)之和等于2n.由此得到2n=16.n=4. 所以(a2+1)4展開式中系數(shù)最大項是中間項T3=Ca4=54.所以a=±. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)已知f (x)=(1+x)m+(1+2x)n(m,n∈N*)的展開式中x的系數(shù)為11.
(1)求x2的系數(shù)的最小值;
(2)當x2的系數(shù)取得最小值時,求f (x)展開式中x的奇次冪項的系數(shù)之和.
解: (1)由已知+2=11,∴m+2n=11,x2的系數(shù)為
+22+2n(n-1)=+(11-m)(-1)=(m)2.
m∈N*,∴m=5時,x2的系數(shù)取最小值22,此時n=3.
(2)由(1)知,當x2的系數(shù)取得最小值時,m=5,n=3,
f (x)=(1+x)5+(1+2x)3.設這時f (x)的展開式為f (x)=a0a1xa2x2a5x5,
x=1,a0a1a2a3a4a5=2533
x=-1,a0a1a2a3a4a5=-1,
兩式相減得2(a1a3a5)=60, 故展開式中x的奇次冪項的系數(shù)之和為30.

查看答案和解析>>

(本小題滿分12分)已知f (x)=(1+x)m+(1+2x)n(mn∈N*)的展開式中x的系數(shù)為11.
(1)求x2的系數(shù)的最小值;
(2)當x2的系數(shù)取得最小值時,求f (x)展開式中x的奇次冪項的系數(shù)之和.
解: (1)由已知+2=11,∴m+2n=11,x2的系數(shù)為
+22+2n(n-1)=+(11-m)(-1)=(m)2.
m∈N*,∴m=5時,x2的系數(shù)取最小值22,此時n=3.
(2)由(1)知,當x2的系數(shù)取得最小值時,m=5,n=3,
f (x)=(1+x)5+(1+2x)3.設這時f (x)的展開式為f (x)=a0a1xa2x2a5x5,
x=1,a0a1a2a3a4a5=2533,
x=-1,a0a1a2a3a4a5=-1,
兩式相減得2(a1a3a5)=60, 故展開式中x的奇次冪項的系數(shù)之和為30.

查看答案和解析>>


同步練習冊答案