題目列表(包括答案和解析)
一段長為32米的籬笆圍成一個一邊靠墻的矩形菜園,墻長18米,問這個矩形的長、寬各為多少時,菜園的面積最大,最大面積是多少?
【解析】解:令矩形與墻垂直的兩邊為寬并設矩形寬為,則長為
所以矩形的面積 () (4分=128 (8分)
當且僅當時,即時等號成立,此時有最大值128
所以當矩形的長為=16,寬為8時,
菜園面積最大,最大面積為128 (13分)答:當矩形的長為16米,寬為8米時。菜園面積最大,最大面積為128平方米(注:也可用二次函數模型解答)
設橢圓方程為,過原點且傾斜角為的兩條直線分別交橢圓于A、C和B、D兩點.(1)用表示四邊形ABCD的面積S;(2)當時,求S的最大值.
已知、為橢圓的兩個焦點,點P在橢圓上,,
當時,的面積最大,則的值等于 。
設中的內角,,所對的邊長分別為,,,且,.
(Ⅰ)當時,求角的度數;(Ⅱ)求面積的最大值.
(本小題滿分14分)
設動圓過點,且與定圓內切,動圓圓心的軌跡記為曲線,點的坐標為.
(1)求曲線的方程;
(2)若點為曲線上任意一點,求點和點的距離的最大值;
(3)當時,在(2)的條件下,設是坐標原點,是曲線上橫坐標為的點,記△的面積為,以為邊長的正方形的面積為.若正數滿足,問是否存在最小值?若存在,求出此最小值;若不存在,請說明理由.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com