∵ ∴C=60° ------6分(2)解:由余弦定理得:c2=a2+b2-2abcosC.即7=a2+b2-ab ----7分 查看更多

 

題目列表(包括答案和解析)

如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓周上的一點(diǎn).

(1)求證:平面PAC⊥平面PBC;(6分)

(2)若AB=2,AC=1,PA=1,求二面角C­PB­A的余弦值.(6分)

 

查看答案和解析>>

(本小題滿分13分)已知函數(shù)(x>0)在x = 1處取得極值–3–c,其中a,b,c為常數(shù)。

(1)試確定a,b的值;(6分)

(2)討論函數(shù)f(x)的單調(diào)區(qū)間;(4分)

(3)若對(duì)任意x>0,不等式恒成立,求c的取值范圍。(3分)

 

查看答案和解析>>

(12分)如圖,在四棱錐P—ABCD中,PA⊥平面ABCD,四邊形ABCD為直角梯形,AD//BC且AD﹥BC,∠DAB=∠ABC=90°,PA=,AB=BC=1。M為PC的中點(diǎn)。

(1)求二面角M—AD—C的大。(6分)

(2)如果∠AMD=90°,求線段AD的長(zhǎng)。(6分)

 

查看答案和解析>>

已知橢圓C:的兩個(gè)焦點(diǎn)為F1、F2,點(diǎn)P在橢圓C上,且|PF1|=,

|PF2|= , PF1⊥F1F2.        

(1)求橢圓C的方程;(6分)

(2)若直線L過圓x2+y2+4x-2y=0的圓心M交橢圓于A、B兩點(diǎn),且A、B關(guān)于點(diǎn)M對(duì)稱,求直線L的方程.

 

查看答案和解析>>

在邊長(zhǎng)為的正方形ABCD中,E、F分別為BC、CD的中點(diǎn),M、N分別為AB、CF的中點(diǎn),現(xiàn)沿AE、AF、EF折疊,使B、C、D三點(diǎn)重合,構(gòu)成一個(gè)三棱錐.

(I)判別MN與平面AEF的位置關(guān)系,并給出證明;

(II)求多面體E-AFMN的體積.

                 

【解析】第一問因翻折后B、C、D重合(如下圖),所以MN應(yīng)是的一條中位線,則利用線線平行得到線面平行。

第二問因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091227575151928240_ST.files/image005.png">平面BEF,……………8分

,

,又 ∴

(1)因翻折后B、C、D重合(如圖),

所以MN應(yīng)是的一條中位線,………………3分

.………6分

(2)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091227575151928240_ST.files/image005.png">平面BEF,……………8分

,

,………………………………………10分

 ∴

 

查看答案和解析>>


同步練習(xí)冊(cè)答案