解:(1)作圖略, (2)取點(diǎn)F和畫AF正確, 添加的條件可以是:F是CE的中點(diǎn), AF⊥CE,∠CAF=∠EAF等. 查看更多

 

題目列表(包括答案和解析)

29、如圖,根據(jù)圖形填空:
已知:AB∥DE,求∠B+∠BCD+∠D的度數(shù).
解:過點(diǎn)C畫FC∥AB
∴∠B+∠1=180°(
兩直線平行,同旁內(nèi)角互補(bǔ)
),
∵AB∥DE(
已知

FC∥AB(作圖)
∴FC∥DE (
如果兩條直線都和第三條直線平行,那么這兩條直線平行

∴∠D+∠2=180°
∴∠B+∠1+∠D+∠2=360°(等式的性質(zhì))
即:∠B+∠BCD+∠D=360°

查看答案和解析>>

閱讀:我們知道,在數(shù)軸上,x=2表示一個點(diǎn),而在平面直角坐標(biāo)系中x=2表示一條直線;我們還知道,以二元一次方程x-y+1=0的所有解為坐標(biāo)的點(diǎn)組成的圖形就是一次函數(shù)y=x+1的圖象,它也是一條直線,如圖①;觀察①可得到直線x=2與直線y=x+1的交點(diǎn)P的坐標(biāo)(2,3)就是方程
x=2
y=x+1
的解.
精英家教網(wǎng)
在直角坐標(biāo)系中,x≤2表示直線x=2以及它左側(cè)的平面區(qū)域;y≤x+1表示直線y=x+1以及它下方的平面區(qū)域;分別見②、③.
(1)請在下面所示的坐標(biāo)中用作圖法求方程組
x=-2
y=-2x+2
的解.
(2)用陰影表示
x≥-2
y≤-2x+2
y≥0
所圍成的區(qū)域.并求出該區(qū)域的面積.
精英家教網(wǎng)

查看答案和解析>>

精英家教網(wǎng)用作圖象的方法解方程組
y=2x+1
y=-x+4

查看答案和解析>>

認(rèn)真閱讀材料,然后回答問題:
我們知道,在數(shù)軸上,x=1表示一個點(diǎn).而在平面直角坐標(biāo)系中,x=1表示一條直線;我們還知道,以二元一次方方程2x-y+1=0的所有解為坐標(biāo)的點(diǎn)組成的圖形就是一次函數(shù)y=2x+1的圖象,它也是一條直線,如圖1可以得出:直線x=1與直線y=2x+1的交點(diǎn)P的坐標(biāo)(1,3)就是方程組
x=1
y=3

在直角坐標(biāo)系中,x≤1表示一個平面區(qū)域,即直線x=1以及它左側(cè)的部分,如圖2;y≧2x+1也表示一個平面區(qū)域,即直線y=2x+1以及它上方的部分,如圖3.回答下列問題:請你自己作一個直角坐標(biāo)系,并在直角坐標(biāo)系中
(1)用作圖象的方法求出方程組
x=-2
y=-2x+2
的解.
(2)用陰影表示
x≥-2
y≤-2x+2
y≥0
,所圍成的區(qū)域.

查看答案和解析>>

已知直線AB∥CD,直線EF與AB、CD分別相交于點(diǎn)E、F.
(1)如圖1,若∠1=60°,求∠2、∠3的度數(shù);
(2)若點(diǎn)P是平面內(nèi)的一個動點(diǎn),連結(jié)PE、PF,探索∠EPF、∠PEB、∠PFD三個角之間的關(guān)系:
①當(dāng)點(diǎn)P在圖2的位置時,可得∠EPF=∠PEB+∠PFD;
請閱讀下面的解答過程,并填空(理由或數(shù)學(xué)式).
解:如圖2,過點(diǎn)P作MN∥AB,
則∠EPM=∠PEB
(兩直線平行,內(nèi)錯角相等)
(兩直線平行,內(nèi)錯角相等)

∵AB∥CD(已知),MN∥AB(作圖),
∴MN∥CD
(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行)
(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行)

∴∠MPF=∠PFD
(兩直線平行,內(nèi)錯角相等)
(兩直線平行,內(nèi)錯角相等)

∠EPM+∠FPM
∠EPM+∠FPM
=∠PEB+∠PFD(等式的性質(zhì))
即∠EPF=∠PEB+∠PFD.
②當(dāng)點(diǎn)P在圖3的位置時,請直接寫出∠EPF、∠PEB、∠PFD三個角之間的關(guān)系:
∠EPF+∠PEB+∠PFD=360°
∠EPF+∠PEB+∠PFD=360°
;
③當(dāng)點(diǎn)P在圖4的位置時,請直接寫出∠EPF、∠PEB、∠PFD三個角之間的關(guān)系:
∠EPF+∠PFD=∠PEB
∠EPF+∠PFD=∠PEB

查看答案和解析>>


同步練習(xí)冊答案