題目列表(包括答案和解析)
(本小題滿(mǎn)分12分)如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,且AB//CD,AB⊥AD,AD=CD=2AB=2.側(cè)面為正三角形,且平面PAD⊥平面ABCD.
(1)若M為PC上一動(dòng)點(diǎn),則M在何位置時(shí),PC⊥平面MDB?并加已證明.
(2)若G為的重心,求二面角G—BD—C大小。
(本小題滿(mǎn)分12分)如圖,在四棱錐P-ABCD中,
底面ABCD為直角梯形,且AB//CD,AB⊥AD,AD=CD=2AB=2.
側(cè)面為正三角形,且平面PAD⊥平面ABCD.網(wǎng)
(1)若M為PC上一動(dòng)點(diǎn),則M在何位置時(shí),PC⊥平面MDB?并加已證明;(2)若G為的重心,求二面角G-BD-C大。學(xué)科網(wǎng)
(
婁底聯(lián)考模擬)如下圖,在四棱錐P-ABCD中.底面ABCD為直角梯形,且AB∥CD,AB⊥AD,AD=CD=2AB=2.側(cè)面△PAD為正三角形,且平面PAD⊥平面ABCD.(1)
若M為PC上一動(dòng)點(diǎn),則M在何位置時(shí),PC⊥平面MDB?并加已證明;(2)
若G為△PBC的重心,求二面角G-BD-C的大。
1-5 DCACC 6-10 ABACA
11.1或-3 12.12 13. 14.15 15.
16.解:因?yàn)?sub>
所以
故 …………6分
令,則的單調(diào)遞增的正值區(qū)間是
,
單調(diào)遞減的正值區(qū)間是
當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為
當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為 (注:區(qū)間為開(kāi)的不扣分)…………12分
17.(本題滿(mǎn)分12分)
解:(Ⅰ)記“該學(xué)生恰好經(jīng)過(guò)4次測(cè)試考上大學(xué)”的事件為事件A,則……6分
(Ⅱ)記“該生考上大學(xué)”的事件為事件B,其對(duì)立事件為,則 ∴ ……12分
18.解:(1)當(dāng)M為PC的中點(diǎn)時(shí),PC⊥平面MDB.------------------1分
事實(shí)上,連BM,DM,取AD的中點(diǎn)N,連NB,NP.
因?yàn)?sub>,且平面PAD平面ABCD,所以PN⊥平面ABCD.
在中,,所以,又
所以,又,平面MDB,
而PD=DC=2,所以,所以平面MDB------------------6分
(2)易知G在中線(xiàn)BM上,過(guò)M作于F,連CF,
因?yàn)?sub>平面MDB,所以,
故是二面角G―BD―C的平面角 ------------------9分
在中,,所以,又
所以,故二面角G―BD―C的大小為----------------12分
19.21.解:(1)三個(gè)函數(shù)的最小值依次為,,
由,得
∴
,
故方程的兩根是,.
故,. ,即
∴ .………………6分
(2)①依題意是方程的根,
故有,,
且△,得.
由……………9分
;得,,.
由(1)知,故,
∴ ,
∴ .………………………12分
20.(1)解法一:設(shè),,,則
兩式相減,得:
又 ,,,
可得 ……………………………………(5分)
解法二:設(shè),,,,直線(xiàn)①
,
,又
由條件:
即……………………………………………………………………(5分)
(2)由①及,可知代入橢圓方程,得
………………………………………………………………………(10分)
又
…………………………………………………(13分)
21.解: (Ⅰ)依題意有,于是.
所以數(shù)列是等差數(shù)列. ………………….2分
(Ⅱ)由題意得,即 , () ①
所以又有. ② ………4分
由②①得,
可知都是等差數(shù)列.那么得
,
. (
故 …………8分
(Ⅲ)當(dāng)為奇數(shù)時(shí),,所以
當(dāng)為偶數(shù)時(shí),所以
作軸,垂足為則,要使等腰三角形為直角三角形,必須且只需.
當(dāng)為奇數(shù)時(shí),有,即 . ①
當(dāng)時(shí),;當(dāng)時(shí),;當(dāng), ①式無(wú)解.
當(dāng)為偶數(shù)時(shí),有,同理可求得.
綜上所述,上述等腰三角形中存在直角三角形,此時(shí)的值為或
或. ……………………..14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com