1.提出問題 思考:(P72思考題)中.哪一年的人口數要達到10億.20億.30億--.該如何解決? 即:在個式子中.分別等于多少? 象上面的式子.已知底數和冪的值.求指數.這就是我們這節(jié)課所要學習的對數. 查看更多

 

題目列表(包括答案和解析)

(2009•崇明縣二模)設橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的一個頂點坐標為A(0,-
2
),且其右焦點到直線y-x-2
2
=0
的距離為3.
(1)求橢圓C的軌跡方程;
(2)若A、B是橢圓C上的不同兩點,弦AB(不平行于y軸)的垂直平分線與x軸相交于點M,則稱弦AB是點M的一條“相關弦”,如果點M的坐標為M(
1
2
,0
),求證點M的所有“相關弦”的中點在同一條直線上;
(3)根據解決問題(2)的經驗與體會,請運用類比、推廣等思想方法,提出一個與“相關弦”有關的具有研究價值的結論,并加以解決.(本小題將根據所提出問題的層次性給予不同的分值)

查看答案和解析>>

老師告訴學生小明說,“若O為△ABC所在平面上的任意一點,且有等式
OP
=
OA
+λ(
AB
cosC
|
AB
|
+
AC
cosB
|
AC
|
)
,則P點的軌跡必過△ABC的垂心”,小明進一步思考何時P點的軌跡會通過△ABC的外心,得到的條件等式應為
OP
=
OP
=
OB
+
OC
2
+λ(
AB
|
AB
|cosB
+
AC
|
AC
|cosC
)
OP
=
OB
+
OC
2
+λ(
AB
|
AB
|cosB
+
AC
|
AC
|cosC
)
.(用O,A,B,C四個點所構成的向量和角A,B,C的三角函數以及λ表示)

查看答案和解析>>

(2008•崇明縣一模)已知:函數fn(x)(n∈N*)的定義域為(-∞,0)∪(0,+∞),其中f1(x)=x+1+
1
x
,并且當n>1且n∈N*時,滿足fn(x)-fn-1(x)=xn+
1
xn

(1)求函數fn(x)(n∈N*)的解析式;
(2)當n=1,2,3時,分別研究函數fn(x)的單調性與值域;
(3)借助(2)的研究過程或研究結論,提出一個類似(2)的研究問題,并寫出問題的研究過程與研究結論.
【第(3)小題將根據你所提出問題的質量,以及解決所提出問題的情況進行分層評分】

查看答案和解析>>

已知:函數fn(x)(n∈N*)的定義域為(-∞,0)∪(0,+∞),其中,并且當n>1且n∈N*時,滿足
(1)求函數fn(x)(n∈N*)的解析式;
(2)當n=1,2,3時,分別研究函數fn(x)的單調性與值域;
(3)借助(2)的研究過程或研究結論,提出一個類似(2)的研究問題,并寫出問題的研究過程與研究結論.
【第(3)小題將根據你所提出問題的質量,以及解決所提出問題的情況進行分層評分】

查看答案和解析>>

建立數學模型一般都要經歷下列過程:從實際情境中提出問題,建立數學模型,通過計算或推導得到結果,結合實際情況進行檢驗.如果合乎實際,就得到可以應用的結果,否則重新審視問題的提出、建模、計算和推導得到結果的過程,直到得到合乎實際的結果為止.請設計一個流程圖表示這一過程.

 

查看答案和解析>>


同步練習冊答案