題目列表(包括答案和解析)
如圖,質(zhì)量為m=60 g的鋼棒長為S=20 cm,棒兩端與長為L=30 cm的細軟銅線相連,吊在磁感應強度為B=0.5 T、豎直向上的勻強磁場中,當棒中通過穩(wěn)恒電流I后,鋼棒向上擺動,最大偏角=60°,g取10 m/s2.
求:鋼棒中電流I的大。
以下是某同學的解答:鋼棒在最高點受到三個力的作用:拉力T,安培力F,重力mg.
對這些力進行正交分解,由于棒在=60°時處于平衡狀態(tài),有:
在水平方向上:Tsin60°=F 、
在豎直方向上:Tcos60°=mg 、
而:F=BIS 、
由①②③可求出鋼棒中的電流I.
請問:該同學所得結論是否正確?
若正確,請代入已知量求出結果.
若有錯誤,請分析錯誤原因并求出正確結果.
在“驗證力的平行四邊形定則”的實驗中,PO為橡皮筋,OA、OB為帶有繩套的兩細繩。①對下列操作和實驗現(xiàn)象的敘述正確的是________
A.兩細繩的夾角要盡可能地大
B.必須測出兩細繩的長度,以便畫出力的圖示
C.有可能兩彈簧測力計的拉力都比橡皮筋的拉力大
D.換用一根彈簧測力計后只需把橡皮筋拉伸到相同長度即可
②在某次實驗中,用兩彈簧秤拉繩使橡皮筋的一端拉伸到O點,在保持O點位置不變的情況下,下列操作可能實現(xiàn)的有_______
A.保持OA、OB兩細線的方向不變,改變兩彈簧秤拉力的大小
B.保持OA的方向及A彈簧秤的示數(shù)不變,改變B彈簧秤的拉力大小及方向
C.保持彈簧秤A的示數(shù)不變,使彈簧秤B的示數(shù)減小
D.保持OB細線的方向不變,使彈簧秤A的示數(shù)減小
(2)某同學利用如圖甲所示的裝置測量某一彈簧的勁度系數(shù),將該彈簧豎直懸掛起來,在自由端掛上砝碼盤。通過改變盤中砝碼的質(zhì)量,測得6組砝碼的質(zhì)量和對應的彈簧長度,畫出一圖線,對應點已在圖上標出,如圖乙所示。(重力加速度)
①采用恰當?shù)臄?shù)據(jù)處理,該彈簧的勁度系數(shù)為 。(保留3位有效數(shù)字)
②請你判斷該同學得到的實驗結果與考慮砝碼盤的質(zhì)量相比,結果 。(填“偏大”、“偏小”或“相同”)
【答案】(1)①C ②CD (2)①3.44N/m ②相同
【解析】
(1)①A、兩細繩的夾角并非越大越好,適當大一些即行,故A錯誤;
B、該實驗通過細繩確定力的方向,并非確定力的大小,故B錯誤;
C、兩彈簧測力計的拉力的合力與橡皮筋的拉力大小相等,兩彈簧測力計的拉力可以同時比橡皮筋的拉力大,故C正確;
D、換用一根彈簧測力計后只需把橡皮筋拉伸到相同位置O,即使橡皮筋的形變方向和大小都相同,故D錯誤。故選C。
②該題中,要求保持O點位置不變,即合力的大小和方向不變,即平行四邊形的對角線不變,根據(jù)平行四邊形定則可知:
A、保持分力的方向不變,而對角線不變化,則平行四邊形只有一種畫法,故A錯誤;
B、一個分力不變,對角線不變,平行四邊形只有一種畫法,故B錯誤;
C、一個分力大小不變,另外一個分力減小,對角線不變,平行四邊形有無數(shù)種畫法,故C正確;
D、一個分力方向不變,另外一個分力減小,對角線不變,平行四邊形有無數(shù)種畫法(兩分力不垂直),故D正確。
故選CD。
(2)①由平衡條件得得,對應圖像可知,斜率對應,故k=3.44 N/m。
②因為k是通過斜率和重力加速度求得的,與質(zhì)量無關,故結果相同。
第九部分 穩(wěn)恒電流
第一講 基本知識介紹
第八部分《穩(wěn)恒電流》包括兩大塊:一是“恒定電流”,二是“物質(zhì)的導電性”。前者是對于電路的外部計算,后者則是深入微觀空間,去解釋電流的成因和比較不同種類的物質(zhì)導電的情形有什么區(qū)別。
應該說,第一塊的知識和高考考綱對應得比較好,深化的部分是對復雜電路的計算(引入了一些新的處理手段)。第二塊雖是全新的內(nèi)容,但近幾年的考試已經(jīng)很少涉及,以至于很多奧賽培訓資料都把它刪掉了。鑒于在奧賽考綱中這部分內(nèi)容還保留著,我們還是想粗略地介紹一下。
一、歐姆定律
1、電阻定律
a、電阻定律 R = ρ
b、金屬的電阻率 ρ = ρ0(1 + αt)
2、歐姆定律
a、外電路歐姆定律 U = IR ,順著電流方向電勢降落
b、含源電路歐姆定律
在如圖8-1所示的含源電路中,從A點到B點,遵照原則:①遇電阻,順電流方向電勢降落(逆電流方向電勢升高)②遇電源,正極到負極電勢降落,負極到正極電勢升高(與電流方向無關),可以得到以下關系
UA ? IR ? ε ? Ir = UB
這就是含源電路歐姆定律。
c、閉合電路歐姆定律
在圖8-1中,若將A、B兩點短接,則電流方向只可能向左,含源電路歐姆定律成為
UA + IR ? ε + Ir = UB = UA
即 ε = IR + Ir ,或 I =
這就是閉合電路歐姆定律。值得注意的的是:①對于復雜電路,“干路電流I”不能做絕對的理解(任何要考察的一條路均可視為干路);②電源的概念也是相對的,它可以是多個電源的串、并聯(lián),也可以是電源和電阻組成的系統(tǒng);③外電阻R可以是多個電阻的串、并聯(lián)或混聯(lián),但不能包含電源。
二、復雜電路的計算
1、戴維南定理:一個由獨立源、線性電阻、線性受控源組成的二端網(wǎng)絡,可以用一個電壓源和電阻串聯(lián)的二端網(wǎng)絡來等效。(事實上,也可等效為“電流源和電阻并聯(lián)的的二端網(wǎng)絡”——這就成了諾頓定理。)
應用方法:其等效電路的電壓源的電動勢等于網(wǎng)絡的開路電壓,其串聯(lián)電阻等于從端鈕看進去該網(wǎng)絡中所有獨立源為零值時的等效電阻。
2、基爾霍夫(克希科夫)定律
a、基爾霍夫第一定律:在任一時刻流入電路中某一分節(jié)點的電流強度的總和,等于從該點流出的電流強度的總和。
例如,在圖8-2中,針對節(jié)點P ,有
I2 + I3 = I1
基爾霍夫第一定律也被稱為“節(jié)點電流定律”,它是電荷受恒定律在電路中的具體體現(xiàn)。
對于基爾霍夫第一定律的理解,近來已經(jīng)拓展為:流入電路中某一“包容塊”的電流強度的總和,等于從該“包容塊”流出的電流強度的總和。
b、基爾霍夫第二定律:在電路中任取一閉合回路,并規(guī)定正的繞行方向,其中電動勢的代數(shù)和,等于各部分電阻(在交流電路中為阻抗)與電流強度乘積的代數(shù)和。
例如,在圖8-2中,針對閉合回路① ,有
ε3 ? ε2 = I3 ( r3 + R2 + r2 ) ? I2R2
基爾霍夫第二定律事實上是含源部分電路歐姆定律的變體(☆同學們可以列方程 UP = … = UP得到和上面完全相同的式子)。
3、Y?Δ變換
在難以看清串、并聯(lián)關系的電路中,進行“Y型?Δ型”的相互轉換常常是必要的。在圖8-3所示的電路中
☆同學們可以證明Δ→ Y的結論…
Rc =
Rb =
Ra =
Y→Δ的變換稍稍復雜一些,但我們?nèi)匀豢梢缘玫?/p>
R1 =
R2 =
R3 =
三、電功和電功率
1、電源
使其他形式的能量轉變?yōu)殡娔艿难b置。如發(fā)電機、電池等。發(fā)電機是將機械能轉變?yōu)殡娔;干電池、蓄電池是將化學能轉變?yōu)殡娔;光電池是將光能轉變?yōu)殡娔;原子電池是將原子核放射能轉變?yōu)殡娔;在電子設備中,有時也把變換電能形式的裝置,如整流器等,作為電源看待。
電源電動勢定義為電源的開路電壓,內(nèi)阻則定義為沒有電動勢時電路通過電源所遇到的電阻。據(jù)此不難推出相同電源串聯(lián)、并聯(lián),甚至不同電源串聯(lián)、并聯(lián)的時的電動勢和內(nèi)阻的值。
例如,電動勢、內(nèi)阻分別為ε1 、r1和ε2 、r2的電源并聯(lián),構成的新電源的電動勢ε和內(nèi)阻r分別為(☆師生共同推導…)
ε =
r =
2、電功、電功率
電流通過電路時,電場力對電荷作的功叫做電功W。單位時間內(nèi)電場力所作的功叫做電功率P 。
計算時,只有W = UIt和P = UI是完全沒有條件的,對于不含源的純電阻,電功和焦耳熱重合,電功率則和熱功率重合,有W = I2Rt = t和P = I2R = 。
對非純電阻電路,電功和電熱的關系依據(jù)能量守恒定律求解。
四、物質(zhì)的導電性
在不同的物質(zhì)中,電荷定向移動形成電流的規(guī)律并不是完全相同的。
1、金屬中的電流
即通常所謂的不含源純電阻中的電流,規(guī)律遵從“外電路歐姆定律”。
2、液體導電
能夠?qū)щ姷囊后w叫電解液(不包括液態(tài)金屬)。電解液中離解出的正負離子導電是液體導電的特點(如:硫酸銅分子在通常情況下是電中性的,但它在溶液里受水分子的作用就會離解成銅離子Cu2+和硫酸根離子S,它們在電場力的作用下定向移動形成電流)。
在電解液中加電場時,在兩個電極上(或電極旁)同時產(chǎn)生化學反應的過程叫作“電解”。電解的結果是在兩個極板上(或電極旁)生成新的物質(zhì)。
液體導電遵從法拉第電解定律——
法拉第電解第一定律:電解時在電極上析出或溶解的物質(zhì)的質(zhì)量和電流強度、跟通電時間成正比。表達式:m = kIt = KQ (式中Q為析出質(zhì)量為m的物質(zhì)所需要的電量;K為電化當量,電化當量的數(shù)值隨著被析出的物質(zhì)種類而不同,某種物質(zhì)的電化當量在數(shù)值上等于通過1C電量時析出的該種物質(zhì)的質(zhì)量,其單位為kg/C。)
法拉第電解第二定律:物質(zhì)的電化當量K和它的化學當量成正比。某種物質(zhì)的化學當量是該物質(zhì)的摩爾質(zhì)量M(克原子量)和它的化合價n的比值,即 K = ,而F為法拉第常數(shù),對任何物質(zhì)都相同,F(xiàn) = 9.65×104C/mol 。
將兩個定律聯(lián)立可得:m = Q 。
3、氣體導電
氣體導電是很不容易的,它的前提是氣體中必須出現(xiàn)可以定向移動的離子或電子。按照“載流子”出現(xiàn)方式的不同,可以把氣體放電分為兩大類——
a、被激放電
在地面放射性元素的輻照以及紫外線和宇宙射線等的作用下,會有少量氣體分子或原子被電離,或在有些燈管內(nèi),通電的燈絲也會發(fā)射電子,這些“載流子”均會在電場力作用下產(chǎn)生定向移動形成電流。這種情況下的電流一般比較微弱,且遵從歐姆定律。典型的被激放電情形有
b、自激放電
但是,當電場足夠強,電子動能足夠大,它們和中性氣體相碰撞時,可以使中性分子電離,即所謂碰撞電離。同時,在正離子向陰極運動時,由于以很大的速度撞到陰極上,還可能從陰極表面上打出電子來,這種現(xiàn)象稱為二次電子發(fā)射。碰撞電離和二次電子發(fā)射使氣體中在很短的時間內(nèi)出現(xiàn)了大量的電子和正離子,電流亦迅速增大。這種現(xiàn)象被稱為自激放電。自激放電不遵從歐姆定律。
常見的自激放電有四大類:輝光放電、弧光放電、火花放電、電暈放電。
4、超導現(xiàn)象
據(jù)金屬電阻率和溫度的關系,電阻率會隨著溫度的降低和降低。當電阻率降為零時,稱為超導現(xiàn)象。電阻率為零時對應的溫度稱為臨界溫度。超導現(xiàn)象首先是荷蘭物理學家昂尼斯發(fā)現(xiàn)的。
超導的應用前景是顯而易見且相當廣闊的。但由于一般金屬的臨界溫度一般都非常低,故產(chǎn)業(yè)化的價值不大,為了解決這個矛盾,科學家們致力于尋找或合成臨界溫度比較切合實際的材料就成了當今前沿科技的一個熱門領域。當前人們的研究主要是集中在合成材料方面,臨界溫度已經(jīng)超過100K,當然,這個溫度距產(chǎn)業(yè)化的期望值還很遠。
5、半導體
半導體的電阻率界于導體和絕緣體之間,且ρ
第二部分 牛頓運動定律
第一講 牛頓三定律
一、牛頓第一定律
1、定律。慣性的量度
2、觀念意義,突破“初態(tài)困惑”
二、牛頓第二定律
1、定律
2、理解要點
a、矢量性
b、獨立作用性:ΣF → a ,ΣFx → ax …
c、瞬時性。合力可突變,故加速度可突變(與之對比:速度和位移不可突變);牛頓第二定律展示了加速度的決定式(加速度的定義式僅僅展示了加速度的“測量手段”)。
3、適用條件
a、宏觀、低速
b、慣性系
對于非慣性系的定律修正——引入慣性力、參與受力分析
三、牛頓第三定律
1、定律
2、理解要點
a、同性質(zhì)(但不同物體)
b、等時效(同增同減)
c、無條件(與運動狀態(tài)、空間選擇無關)
第二講 牛頓定律的應用
一、牛頓第一、第二定律的應用
單獨應用牛頓第一定律的物理問題比較少,一般是需要用其解決物理問題中的某一個環(huán)節(jié)。
應用要點:合力為零時,物體靠慣性維持原有運動狀態(tài);只有物體有加速度時才需要合力。有質(zhì)量的物體才有慣性。a可以突變而v、s不可突變。
1、如圖1所示,在馬達的驅(qū)動下,皮帶運輸機上方的皮帶以恒定的速度向右運動,F(xiàn)將一工件(大小不計)在皮帶左端A點輕輕放下,則在此后的過程中( )
A、一段時間內(nèi),工件將在滑動摩擦力作用下,對地做加速運動
B、當工件的速度等于v時,它與皮帶之間的摩擦力變?yōu)殪o摩擦力
C、當工件相對皮帶靜止時,它位于皮帶上A點右側的某一點
D、工件在皮帶上有可能不存在與皮帶相對靜止的狀態(tài)
解說:B選項需要用到牛頓第一定律,A、C、D選項用到牛頓第二定律。
較難突破的是A選項,在為什么不會“立即跟上皮帶”的問題上,建議使用反證法(t → 0 ,a → ∞ ,則ΣFx → ∞ ,必然會出現(xiàn)“供不應求”的局面)和比較法(為什么人跳上速度不大的物體可以不發(fā)生相對滑動?因為人是可以形變、重心可以調(diào)節(jié)的特殊“物體”)
此外,本題的D選項還要用到勻變速運動規(guī)律。用勻變速運動規(guī)律和牛頓第二定律不難得出
只有當L > 時(其中μ為工件與皮帶之間的動摩擦因素),才有相對靜止的過程,否則沒有。
答案:A、D
思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,試求工件到達皮帶右端的時間t(過程略,答案為5.5s)
進階練習:在上面“思考”題中,將工件給予一水平向右的初速v0 ,其它條件不變,再求t(學生分以下三組進行)——
① v0 = 1m/s (答:0.5 + 37/8 = 5.13s)
② v0 = 4m/s (答:1.0 + 3.5 = 4.5s)
③ v0 = 1m/s (答:1.55s)
2、質(zhì)量均為m的兩只鉤碼A和B,用輕彈簧和輕繩連接,然后掛在天花板上,如圖2所示。試問:
① 如果在P處剪斷細繩,在剪斷瞬時,B的加速度是多少?
② 如果在Q處剪斷彈簧,在剪斷瞬時,B的加速度又是多少?
解說:第①問是常規(guī)處理。由于“彈簧不會立即發(fā)生形變”,故剪斷瞬間彈簧彈力維持原值,所以此時B鉤碼的加速度為零(A的加速度則為2g)。
第②問需要我們反省這樣一個問題:“彈簧不會立即發(fā)生形變”的原因是什么?是A、B兩物的慣性,且速度v和位移s不能突變。但在Q點剪斷彈簧時,彈簧卻是沒有慣性的(沒有質(zhì)量),遵從理想模型的條件,彈簧應在一瞬間恢復原長!即彈簧彈力突變?yōu)榱恪?/p>
答案:0 ;g 。
二、牛頓第二定律的應用
應用要點:受力較少時,直接應用牛頓第二定律的“矢量性”解題。受力比較多時,結合正交分解與“獨立作用性”解題。
在難度方面,“瞬時性”問題相對較大。
1、滑塊在固定、光滑、傾角為θ的斜面上下滑,試求其加速度。
解說:受力分析 → 根據(jù)“矢量性”定合力方向 → 牛頓第二定律應用
答案:gsinθ。
思考:如果斜面解除固定,上表仍光滑,傾角仍為θ,要求滑塊與斜面相對靜止,斜面應具備一個多大的水平加速度?(解題思路完全相同,研究對象仍為滑塊。但在第二環(huán)節(jié)上應注意區(qū)別。答:gtgθ。)
進階練習1:在一向右運動的車廂中,用細繩懸掛的小球呈現(xiàn)如圖3所示的穩(wěn)定狀態(tài),試求車廂的加速度。(和“思考”題同理,答:gtgθ。)
進階練習2、如圖4所示,小車在傾角為α的斜面上勻加速運動,車廂頂用細繩懸掛一小球,發(fā)現(xiàn)懸繩與豎直方向形成一個穩(wěn)定的夾角β。試求小車的加速度。
解:繼續(xù)貫徹“矢量性”的應用,但數(shù)學處理復雜了一些(正弦定理解三角形)。
分析小球受力后,根據(jù)“矢量性”我們可以做如圖5所示的平行四邊形,并找到相應的夾角。設張力T與斜面方向的夾角為θ,則
θ=(90°+ α)- β= 90°-(β-α) (1)
對灰色三角形用正弦定理,有
= (2)
解(1)(2)兩式得:ΣF =
最后運用牛頓第二定律即可求小球加速度(即小車加速度)
答: 。
2、如圖6所示,光滑斜面傾角為θ,在水平地面上加速運動。斜面上用一條與斜面平行的細繩系一質(zhì)量為m的小球,當斜面加速度為a時(a<ctgθ),小球能夠保持相對斜面靜止。試求此時繩子的張力T 。
解說:當力的個數(shù)較多,不能直接用平行四邊形尋求合力時,宜用正交分解處理受力,在對應牛頓第二定律的“獨立作用性”列方程。
正交坐標的選擇,視解題方便程度而定。
解法一:先介紹一般的思路。沿加速度a方向建x軸,與a垂直的方向上建y軸,如圖7所示(N為斜面支持力)。于是可得兩方程
ΣFx = ma ,即Tx - Nx = ma
ΣFy = 0 , 即Ty + Ny = mg
代入方位角θ,以上兩式成為
T cosθ-N sinθ = ma (1)
T sinθ + Ncosθ = mg (2)
這是一個關于T和N的方程組,解(1)(2)兩式得:T = mgsinθ + ma cosθ
解法二:下面嘗試一下能否獨立地解張力T 。將正交分解的坐標選擇為:x——斜面方向,y——和斜面垂直的方向。這時,在分解受力時,只分解重力G就行了,但值得注意,加速度a不在任何一個坐標軸上,是需要分解的。矢量分解后,如圖8所示。
根據(jù)獨立作用性原理,ΣFx = max
即:T - Gx = max
即:T - mg sinθ = m acosθ
顯然,獨立解T值是成功的。結果與解法一相同。
答案:mgsinθ + ma cosθ
思考:當a>ctgθ時,張力T的結果會變化嗎?(從支持力的結果N = mgcosθ-ma sinθ看小球脫離斜面的條件,求脫離斜面后,θ條件已沒有意義。答:T = m 。)
學生活動:用正交分解法解本節(jié)第2題“進階練習2”
進階練習:如圖9所示,自動扶梯與地面的夾角為30°,但扶梯的臺階是水平的。當扶梯以a = 4m/s2的加速度向上運動時,站在扶梯上質(zhì)量為60kg的人相對扶梯靜止。重力加速度g = 10 m/s2,試求扶梯對人的靜摩擦力f 。
解:這是一個展示獨立作用性原理的經(jīng)典例題,建議學生選擇兩種坐標(一種是沿a方向和垂直a方向,另一種是水平和豎直方向),對比解題過程,進而充分領會用牛頓第二定律解題的靈活性。
答:208N 。
3、如圖10所示,甲圖系著小球的是兩根輕繩,乙圖系著小球的是一根輕彈簧和輕繩,方位角θ已知,F(xiàn)將它們的水平繩剪斷,試求:在剪斷瞬間,兩種情形下小球的瞬時加速度。
解說:第一步,闡明繩子彈力和彈簧彈力的區(qū)別。
(學生活動)思考:用豎直的繩和彈簧懸吊小球,并用豎直向下的力拉住小球靜止,然后同時釋放,會有什么現(xiàn)象?原因是什么?
結論——繩子的彈力可以突變而彈簧的彈力不能突變(胡克定律)。
第二步,在本例中,突破“繩子的拉力如何瞬時調(diào)節(jié)”這一難點(從即將開始的運動來反推)。
知識點,牛頓第二定律的瞬時性。
答案:a甲 = gsinθ ;a乙 = gtgθ 。
應用:如圖11所示,吊籃P掛在天花板上,與吊籃質(zhì)量相等的物體Q被固定在吊籃中的輕彈簧托住,當懸掛吊籃的細繩被燒斷瞬間,P、Q的加速度分別是多少?
解:略。
答:2g ;0 。
三、牛頓第二、第三定律的應用
要點:在動力學問題中,如果遇到幾個研究對象時,就會面臨如何處理對象之間的力和對象與外界之間的力問題,這時有必要引進“系統(tǒng)”、“內(nèi)力”和“外力”等概念,并適時地運用牛頓第三定律。
在方法的選擇方面,則有“隔離法”和“整體法”。前者是根本,后者有局限,也有難度,但常常使解題過程簡化,使過程的物理意義更加明晰。
對N個對象,有N個隔離方程和一個(可能的)整體方程,這(N + 1)個方程中必有一個是通解方程,如何取舍,視解題方便程度而定。
補充:當多個對象不具有共同的加速度時,一般來講,整體法不可用,但也有一種特殊的“整體方程”,可以不受這個局限(可以介紹推導過程)——
Σ= m1 + m2 + m3 + … + mn
其中Σ只能是系統(tǒng)外力的矢量和,等式右邊也是矢量相加。
1、如圖12所示,光滑水平面上放著一個長為L的均質(zhì)直棒,現(xiàn)給棒一個沿棒方向的、大小為F的水平恒力作用,則棒中各部位的張力T隨圖中x的關系怎樣?
解說:截取隔離對象,列整體方程和隔離方程(隔離右段較好)。
答案:N = x 。
思考:如果水平面粗糙,結論又如何?
解:分兩種情況,(1)能拉動;(2)不能拉動。
第(1)情況的計算和原題基本相同,只是多了一個摩擦力的處理,結論的化簡也麻煩一些。
第(2)情況可設棒的總質(zhì)量為M ,和水平面的摩擦因素為μ,而F = μMg ,其中l(wèi)<L ,則x<(L-l)的右段沒有張力,x>(L-l)的左端才有張力。
答:若棒仍能被拉動,結論不變。
若棒不能被拉動,且F = μMg時(μ為棒與平面的摩擦因素,l為小于L的某一值,M為棒的總質(zhì)量),當x<(L-l),N≡0 ;當x>(L-l),N = 〔x -〈L-l〉〕。
應用:如圖13所示,在傾角為θ的固定斜面上,疊放著兩個長方體滑塊,它們的質(zhì)量分別為m1和m2 ,它們之間的摩擦因素、和斜面的摩擦因素分別為μ1和μ2 ,系統(tǒng)釋放后能夠一起加速下滑,則它們之間的摩擦力大小為:
A、μ1 m1gcosθ ; B、μ2 m1gcosθ ;
C、μ1 m2gcosθ ; D、μ1 m2gcosθ ;
解:略。
答:B 。(方向沿斜面向上。)
思考:(1)如果兩滑塊不是下滑,而是以初速度v0一起上沖,以上結論會變嗎?(2)如果斜面光滑,兩滑塊之間有沒有摩擦力?(3)如果將下面的滑塊換成如圖14所示的盒子,上面的滑塊換成小球,它們以初速度v0一起上沖,球應對盒子的哪一側內(nèi)壁有壓力?
解:略。
答:(1)不會;(2)沒有;(3)若斜面光滑,對兩內(nèi)壁均無壓力,若斜面粗糙,對斜面上方的內(nèi)壁有壓力。
2、如圖15所示,三個物體質(zhì)量分別為m1 、m2和m3 ,帶滑輪的物體放在光滑水平面上,滑輪和所有接觸面的摩擦均不計,繩子的質(zhì)量也不計,為使三個物體無相對滑動,水平推力F應為多少?
解說:
此題對象雖然有三個,但難度不大。隔離m2 ,豎直方向有一個平衡方程;隔離m1 ,水平方向有一個動力學方程;整體有一個動力學方程。就足以解題了。
答案:F = 。
思考:若將質(zhì)量為m3物體右邊挖成凹形,讓m2可以自由擺動(而不與m3相碰),如圖16所示,其它條件不變。是否可以選擇一個恰當?shù)腇′,使三者無相對運動?如果沒有,說明理由;如果有,求出這個F′的值。
解:此時,m2的隔離方程將較為復雜。設繩子張力為T ,m2的受力情況如圖,隔離方程為:
= m2a
隔離m1 ,仍有:T = m1a
解以上兩式,可得:a = g
最后用整體法解F即可。
答:當m1 ≤ m2時,沒有適應題意的F′;當m1 > m2時,適應題意的F′= 。
3、一根質(zhì)量為M的木棒,上端用細繩系在天花板上,棒上有一質(zhì)量為m的貓,如圖17所示,F(xiàn)將系木棒的繩子剪斷,同時貓相對棒往上爬,但要求貓對地的高度不變,則棒的加速度將是多少?
解說:法一,隔離法。需要設出貓爪抓棒的力f ,然后列貓的平衡方程和棒的動力學方程,解方程組即可。
法二,“新整體法”。
據(jù)Σ= m1 + m2 + m3 + … + mn ,貓和棒的系統(tǒng)外力只有兩者的重力,豎直向下,而貓的加速度a1 = 0 ,所以:
( M + m )g = m·0 + M a1
解棒的加速度a1十分容易。
答案:g 。
四、特殊的連接體
當系統(tǒng)中各個體的加速度不相等時,經(jīng)典的整體法不可用。如果各個體的加速度不在一條直線上,“新整體法”也將有一定的困難(矢量求和不易)。此時,我們回到隔離法,且要更加注意找各參量之間的聯(lián)系。
解題思想:抓某個方向上加速度關系。方法:“微元法”先看位移關系,再推加速度關系。、
1、如圖18所示,一質(zhì)量為M 、傾角為θ的光滑斜面,放置在光滑的水平面上,另一個質(zhì)量為m的滑塊從斜面頂端釋放,試求斜面的加速度。
解說:本題涉及兩個物體,它們的加速度關系復雜,但在垂直斜面方向上,大小是相等的。對兩者列隔離方程時,務必在這個方向上進行突破。
(學生活動)定型判斷斜面的運動情況、滑塊的運動情況。
位移矢量示意圖如圖19所示。根據(jù)運動學規(guī)律,加速度矢量a1和a2也具有這樣的關系。
(學生活動)這兩個加速度矢量有什么關系?
沿斜面方向、垂直斜面方向建x 、y坐標,可得:
a1y = a2y ①
且:a1y = a2sinθ ②
隔離滑塊和斜面,受力圖如圖20所示。
對滑塊,列y方向隔離方程,有:
mgcosθ- N = ma1y ③
對斜面,仍沿合加速度a2方向列方程,有:
Nsinθ= Ma2 ④
解①②③④式即可得a2 。
答案:a2 = 。
(學生活動)思考:如何求a1的值?
解:a1y已可以通過解上面的方程組求出;a1x只要看滑塊的受力圖,列x方向的隔離方程即可,顯然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后據(jù)a1 = 求a1 。
答:a1 = 。
2、如圖21所示,與水平面成θ角的AB棒上有一滑套C ,可以無摩擦地在棒上滑動,開始時與棒的A端相距b ,相對棒靜止。當棒保持傾角θ不變地沿水平面勻加速運動,加速度為a(且a>gtgθ)時,求滑套C從棒的A端滑出所經(jīng)歷的時間。
解說:這是一個比較特殊的“連接體問題”,尋求運動學參量的關系似乎比動力學分析更加重要。動力學方面,只需要隔離滑套C就行了。
(學生活動)思考:為什么題意要求a>gtgθ?(聯(lián)系本講第二節(jié)第1題之“思考題”)
定性繪出符合題意的運動過程圖,如圖22所示:S表示棒的位移,S1表示滑套的位移。沿棒與垂直棒建直角坐標后,S1x表示S1在x方向上的分量。不難看出:
S1x + b = S cosθ ①
設全程時間為t ,則有:
S = at2 ②
S1x = a1xt2 ③
而隔離滑套,受力圖如圖23所示,顯然:
mgsinθ= ma1x ④
解①②③④式即可。
答案:t =
另解:如果引進動力學在非慣性系中的修正式 Σ+ * = m (注:*為慣性力),此題極簡單。過程如下——
以棒為參照,隔離滑套,分析受力,如圖24所示。
注意,滑套相對棒的加速度a相是沿棒向上的,故動力學方程為:
F*cosθ- mgsinθ= ma相 (1)
其中F* = ma (2)
而且,以棒為參照,滑套的相對位移S相就是b ,即:
b = S相 = a相 t2 (3)
解(1)(2)(3)式就可以了。
第二講 配套例題選講
教材范本:龔霞玲主編《奧林匹克物理思維訓練教材》,知識出版社,2002年8月第一版。
例題選講針對“教材”第三章的部分例題和習題。
第一部分 力&物體的平衡
第一講 力的處理
一、矢量的運算
1、加法
表達: + = 。
名詞:為“和矢量”。
法則:平行四邊形法則。如圖1所示。
和矢量大。篶 = ,其中α為和的夾角。
和矢量方向:在、之間,和夾角β= arcsin
2、減法
表達: = - 。
名詞:為“被減數(shù)矢量”,為“減數(shù)矢量”,為“差矢量”。
法則:三角形法則。如圖2所示。將被減數(shù)矢量和減數(shù)矢量的起始端平移到一點,然后連接兩時量末端,指向被減數(shù)時量的時量,即是差矢量。
差矢量大。篴 = ,其中θ為和的夾角。
差矢量的方向可以用正弦定理求得。
一條直線上的矢量運算是平行四邊形和三角形法則的特例。
例題:已知質(zhì)點做勻速率圓周運動,半徑為R ,周期為T ,求它在T內(nèi)和在T內(nèi)的平均加速度大小。
解說:如圖3所示,A到B點對應T的過程,A到C點對應T的過程。這三點的速度矢量分別設為、和。
根據(jù)加速度的定義 = 得:= ,=
由于有兩處涉及矢量減法,設兩個差矢量 = - ,= - ,根據(jù)三角形法則,它們在圖3中的大小、方向已繪出(的“三角形”已被拉伸成一條直線)。
本題只關心各矢量的大小,顯然:
= = = ,且: = = , = 2=
所以:= = = ,= = = 。
(學生活動)觀察與思考:這兩個加速度是否相等,勻速率圓周運動是不是勻變速運動?
答:否;不是。
3、乘法
矢量的乘法有兩種:叉乘和點乘,和代數(shù)的乘法有著質(zhì)的不同。
⑴ 叉乘
表達:× =
名詞:稱“矢量的叉積”,它是一個新的矢量。
叉積的大小:c = absinα,其中α為和的夾角。意義:的大小對應由和作成的平行四邊形的面積。
叉積的方向:垂直和確定的平面,并由右手螺旋定則確定方向,如圖4所示。
顯然,×≠×,但有:×= -×
⑵ 點乘
表達:· = c
名詞:c稱“矢量的點積”,它不再是一個矢量,而是一個標量。
點積的大。篶 = abcosα,其中α為和的夾角。
二、共點力的合成
1、平行四邊形法則與矢量表達式
2、一般平行四邊形的合力與分力的求法
余弦定理(或分割成RtΔ)解合力的大小
正弦定理解方向
三、力的分解
1、按效果分解
2、按需要——正交分解
第二講 物體的平衡
一、共點力平衡
1、特征:質(zhì)心無加速度。
2、條件:Σ = 0 ,或 = 0 , = 0
例題:如圖5所示,長為L 、粗細不均勻的橫桿被兩根輕繩水平懸掛,繩子與水平方向的夾角在圖上已標示,求橫桿的重心位置。
解說:直接用三力共點的知識解題,幾何關系比較簡單。
答案:距棒的左端L/4處。
(學生活動)思考:放在斜面上的均質(zhì)長方體,按實際情況分析受力,斜面的支持力會通過長方體的重心嗎?
解:將各處的支持力歸納成一個N ,則長方體受三個力(G 、f 、N)必共點,由此推知,N不可能通過長方體的重心。正確受力情形如圖6所示(通常的受力圖是將受力物體看成一個點,這時,N就過重心了)。
答:不會。
二、轉動平衡
1、特征:物體無轉動加速度。
2、條件:Σ= 0 ,或ΣM+ =ΣM-
如果物體靜止,肯定會同時滿足兩種平衡,因此用兩種思路均可解題。
3、非共點力的合成
大小和方向:遵從一條直線矢量合成法則。
作用點:先假定一個等效作用點,然后讓所有的平行力對這個作用點的和力矩為零。
第三講 習題課
1、如圖7所示,在固定的、傾角為α斜面上,有一塊可以轉動的夾板(β不定),夾板和斜面夾著一個質(zhì)量為m的光滑均質(zhì)球體,試求:β取何值時,夾板對球的彈力最小。
解說:法一,平行四邊形動態(tài)處理。
對球體進行受力分析,然后對平行四邊形中的矢量G和N1進行平移,使它們構成一個三角形,如圖8的左圖和中圖所示。
由于G的大小和方向均不變,而N1的方向不可變,當β增大導致N2的方向改變時,N2的變化和N1的方向變化如圖8的右圖所示。
顯然,隨著β增大,N1單調(diào)減小,而N2的大小先減小后增大,當N2垂直N1時,N2取極小值,且N2min = Gsinα。
法二,函數(shù)法。
看圖8的中間圖,對這個三角形用正弦定理,有:
= ,即:N2 = ,β在0到180°之間取值,N2的極值討論是很容易的。
答案:當β= 90°時,甲板的彈力最小。
2、把一個重為G的物體用一個水平推力F壓在豎直的足夠高的墻壁上,F(xiàn)隨時間t的變化規(guī)律如圖9所示,則在t = 0開始物體所受的摩擦力f的變化圖線是圖10中的哪一個?
解說:靜力學旨在解決靜態(tài)問題和準靜態(tài)過程的問題,但本題是一個例外。物體在豎直方向的運動先加速后減速,平衡方程不再適用。如何避開牛頓第二定律,是本題授課時的難點。
靜力學的知識,本題在于區(qū)分兩種摩擦的不同判據(jù)。
水平方向合力為零,得:支持力N持續(xù)增大。
物體在運動時,滑動摩擦力f = μN ,必持續(xù)增大。但物體在靜止后靜摩擦力f′≡ G ,與N沒有關系。
對運動過程加以分析,物體必有加速和減速兩個過程。據(jù)物理常識,加速時,f < G ,而在減速時f > G 。
答案:B 。
3、如圖11所示,一個重量為G的小球套在豎直放置的、半徑為R的光滑大環(huán)上,另一輕質(zhì)彈簧的勁度系數(shù)為k ,自由長度為L(L<2R),一端固定在大圓環(huán)的頂點A ,另一端與小球相連。環(huán)靜止平衡時位于大環(huán)上的B點。試求彈簧與豎直方向的夾角θ。
解說:平行四邊形的三個矢量總是可以平移到一個三角形中去討論,解三角形的典型思路有三種:①分割成直角三角形(或本來就是直角三角形);②利用正、余弦定理;③利用力學矢量三角形和某空間位置三角形相似。本題旨在貫徹第三種思路。
分析小球受力→矢量平移,如圖12所示,其中F表示彈簧彈力,N表示大環(huán)的支持力。
(學生活動)思考:支持力N可不可以沿圖12中的反方向?(正交分解看水平方向平衡——不可以。)
容易判斷,圖中的灰色矢量三角形和空間位置三角形ΔAOB是相似的,所以:
⑴
由胡克定律:F = k(- R) ⑵
幾何關系:= 2Rcosθ ⑶
解以上三式即可。
答案:arccos 。
(學生活動)思考:若將彈簧換成勁度系數(shù)k′較大的彈簧,其它條件不變,則彈簧彈力怎么變?環(huán)的支持力怎么變?
答:變。徊蛔。
(學生活動)反饋練習:光滑半球固定在水平面上,球心O的正上方有一定滑輪,一根輕繩跨過滑輪將一小球從圖13所示的A位置開始緩慢拉至B位置。試判斷:在此過程中,繩子的拉力T和球面支持力N怎樣變化?
解:和上題完全相同。
答:T變小,N不變。
4、如圖14所示,一個半徑為R的非均質(zhì)圓球,其重心不在球心O點,先將它置于水平地面上,平衡時球面上的A點和地面接觸;再將它置于傾角為30°的粗糙斜面上,平衡時球面上的B點與斜面接觸,已知A到B的圓心角也為30°。試求球體的重心C到球心O的距離。
解說:練習三力共點的應用。
根據(jù)在平面上的平衡,可知重心C在OA連線上。根據(jù)在斜面上的平衡,支持力、重力和靜摩擦力共點,可以畫出重心的具體位置。幾何計算比較簡單。
答案:R 。
(學生活動)反饋練習:靜摩擦足夠,將長為a 、厚為b的磚塊碼在傾角為θ的斜面上,最多能碼多少塊?
解:三力共點知識應用。
答: 。
4、兩根等長的細線,一端拴在同一懸點O上,另一端各系一個小球,兩球的質(zhì)量分別為m1和m2 ,已知兩球間存在大小相等、方向相反的斥力而使兩線張開一定角度,分別為45和30°,如圖15所示。則m1 : m2??為多少?
解說:本題考查正弦定理、或力矩平衡解靜力學問題。
對兩球進行受力分析,并進行矢量平移,如圖16所示。
首先注意,圖16中的灰色三角形是等腰三角形,兩底角相等,設為α。
而且,兩球相互作用的斥力方向相反,大小相等,可用同一字母表示,設為F 。
對左邊的矢量三角形用正弦定理,有:
= ①
同理,對右邊的矢量三角形,有: = ②
解①②兩式即可。
答案:1 : 。
(學生活動)思考:解本題是否還有其它的方法?
答:有——將模型看成用輕桿連成的兩小球,而將O點看成轉軸,兩球的重力對O的力矩必然是平衡的。這種方法更直接、簡便。
應用:若原題中繩長不等,而是l1 :l2 = 3 :2 ,其它條件不變,m1與m2的比值又將是多少?
解:此時用共點力平衡更加復雜(多一個正弦定理方程),而用力矩平衡則幾乎和“思考”完全相同。
答:2 :3 。
5、如圖17所示,一個半徑為R的均質(zhì)金屬球上固定著一根長為L的輕質(zhì)細桿,細桿的左端用鉸鏈與墻壁相連,球下邊墊上一塊木板后,細桿恰好水平,而木板下面是光滑的水平面。由于金屬球和木板之間有摩擦(已知摩擦因素為μ),所以要將木板從球下面向右抽出時,至少需要大小為F的水平拉力。試問:現(xiàn)要將木板繼續(xù)向左插進一些,至少需要多大的水平推力?
解說:這是一個典型的力矩平衡的例題。
以球和桿為對象,研究其對轉軸O的轉動平衡,設木板拉出時給球體的摩擦力為f ,支持力為N ,重力為G ,力矩平衡方程為:
f R + N(R + L)= G(R + L) ①
球和板已相對滑動,故:f = μN ②
解①②可得:f =
再看木板的平衡,F(xiàn) = f 。
同理,木板插進去時,球體和木板之間的摩擦f′= = F′。
答案: 。
第四講 摩擦角及其它
一、摩擦角
1、全反力:接觸面給物體的摩擦力與支持力的合力稱全反力,一般用R表示,亦稱接觸反力。
2、摩擦角:全反力與支持力的最大夾角稱摩擦角,一般用φm表示。
此時,要么物體已經(jīng)滑動,必有:φm = arctgμ(μ為動摩擦因素),稱動摩擦力角;要么物體達到最大運動趨勢,必有:φms = arctgμs(μs為靜摩擦因素),稱靜摩擦角。通常處理為φm = φms 。
3、引入全反力和摩擦角的意義:使分析處理物體受力時更方便、更簡捷。
二、隔離法與整體法
1、隔離法:當物體對象有兩個或兩個以上時,有必要各個擊破,逐個講每個個體隔離開來分析處理,稱隔離法。
在處理各隔離方程之間的聯(lián)系時,應注意相互作用力的大小和方向關系。
2、整體法:當各個體均處于平衡狀態(tài)時,我們可以不顧個體的差異而講多個對象看成一個整體進行分析處理,稱整體法。
應用整體法時應注意“系統(tǒng)”、“內(nèi)力”和“外力”的涵義。
三、應用
1、物體放在水平面上,用與水平方向成30°的力拉物體時,物體勻速前進。若此力大小不變,改為沿水平方向拉物體,物體仍能勻速前進,求物體與水平面之間的動摩擦因素μ。
解說:這是一個能顯示摩擦角解題優(yōu)越性的題目?梢酝ㄟ^不同解法的比較讓學生留下深刻印象。
法一,正交分解。(學生分析受力→列方程→得結果。)
法二,用摩擦角解題。
引進全反力R ,對物體兩個平衡狀態(tài)進行受力分析,再進行矢量平移,得到圖18中的左圖和中間圖(注意:重力G是不變的,而全反力R的方向不變、F的大小不變),φm指摩擦角。
再將兩圖重疊成圖18的右圖。由于灰色的三角形是一個頂角為30°的等腰三角形,其頂角的角平分線必垂直底邊……故有:φm = 15°。
最后,μ= tgφm 。
答案:0.268 。
(學生活動)思考:如果F的大小是可以選擇的,那么能維持物體勻速前進的最小F值是多少?
解:見圖18,右圖中虛線的長度即Fmin ,所以,F(xiàn)min = Gsinφm 。
答:Gsin15°(其中G為物體的重量)。
2、如圖19所示,質(zhì)量m = 5kg的物體置于一粗糙斜面上,并用一平行斜面的、大小F = 30N的推力推物體,使物體能夠沿斜面向上勻速運動,而斜面體始終靜止。已知斜面的質(zhì)量M = 10kg ,傾角為30°,重力加速度g = 10m/s2 ,求地面對斜面體的摩擦力大小。
解說:
本題旨在顯示整體法的解題的優(yōu)越性。
法一,隔離法。簡要介紹……
法二,整體法。注意,滑塊和斜面隨有相對運動,但從平衡的角度看,它們是完全等價的,可以看成一個整體。
做整體的受力分析時,內(nèi)力不加考慮。受力分析比較簡單,列水平方向平衡方程很容易解地面摩擦力。
答案:26.0N 。
(學生活動)地面給斜面體的支持力是多少?
解:略。
答:135N 。
應用:如圖20所示,一上表面粗糙的斜面體上放在光滑的水平地面上,斜面的傾角為θ。另一質(zhì)量為m的滑塊恰好能沿斜面勻速下滑。若用一推力F作用在滑塊上,使之能沿斜面勻速上滑,且要求斜面體靜止不動,就必須施加一個大小為P = 4mgsinθcosθ的水平推力作用于斜面體。使?jié)M足題意的這個F的大小和方向。
解說:這是一道難度較大的靜力學題,可以動用一切可能的工具解題。
法一:隔離法。
由第一個物理情景易得,斜面于滑塊的摩擦因素μ= tgθ
對第二個物理情景,分別隔離滑塊和斜面體分析受力,并將F沿斜面、垂直斜面分解成Fx和Fy ,滑塊與斜面之間的兩對相互作用力只用兩個字母表示(N表示正壓力和彈力,f表示摩擦力),如圖21所示。
對滑塊,我們可以考查沿斜面方向和垂直斜面方向的平衡——
Fx = f + mgsinθ
Fy + mgcosθ= N
且 f = μN = Ntgθ
綜合以上三式得到:
Fx = Fytgθ+ 2mgsinθ ①
對斜面體,只看水平方向平衡就行了——
P = fcosθ+ Nsinθ
即:4mgsinθcosθ=μNcosθ+ Nsinθ
代入μ值,化簡得:Fy = mgcosθ ②
②代入①可得:Fx = 3mgsinθ
最后由F =解F的大小,由tgα= 解F的方向(設α為F和斜面的夾角)。
答案:大小為F = mg,方向和斜面夾角α= arctg()指向斜面內(nèi)部。
法二:引入摩擦角和整體法觀念。
仍然沿用“法一”中關于F的方向設置(見圖21中的α角)。
先看整體的水平方向平衡,有:Fcos(θ- α) = P ⑴
再隔離滑塊,分析受力時引進全反力R和摩擦角φ,由于簡化后只有三個力(R、mg和F),可以將矢量平移后構成一個三角形,如圖22所示。
在圖22右邊的矢量三角形中,有: = = ⑵
注意:φ= arctgμ= arctg(tgθ) = θ ⑶
解⑴⑵⑶式可得F和α的值。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com