已知函數(shù).⑴試問(wèn):過(guò)點(diǎn)的曲線的切線有幾條.如果是一條寫(xiě)出該切線的方向向量.如果是二條求二切線之間的夾角.如果是三條寫(xiě)出切線方程.⑵如果時(shí).求函數(shù)的最小值.(14) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=x3+ax2+bx,且f′(-1)=0。
(1)試用含a的代數(shù)式表示b,并求f(x)的單調(diào)區(qū)間;
(2)令a=-1,設(shè)函數(shù)f(x)在x1,x2(x1<x2)處取得極值,記點(diǎn)M (x1,f(x1)),N(x2,f(x2)),P(m,f(m)),x1<m<x2,請(qǐng)仔細(xì)觀察曲線f(x)在點(diǎn)P處的切線與線段MP的位置變化趨勢(shì),并解釋以下問(wèn)題:
(i)若對(duì)任意的t∈(x1,x2),線段MP與曲線f(x)均有異于M,P的公共點(diǎn),試確定t的最小值,并證明你的結(jié)論;
(ii)若存在點(diǎn)Q(n,f(n)),x≤n<m,使得線段PQ與曲線f(x)有異于P、Q的公共點(diǎn),請(qǐng)直接寫(xiě)出m的取值范圍(不必給出求解過(guò)程)。

查看答案和解析>>

已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過(guò)點(diǎn)A(2,m)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問(wèn),利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設(shè)切點(diǎn)為(x0,x03-3x0),因?yàn)檫^(guò)點(diǎn)A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設(shè)切點(diǎn)為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過(guò)點(diǎn)A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫(huà)出草圖知,當(dāng)-6<m<2時(shí),m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

已知函數(shù)處取得極值2 ,

(Ⅰ)求的解析式;

(Ⅱ)設(shè)A是曲線上除原點(diǎn)O外的任意一點(diǎn),過(guò)OA的中點(diǎn)且垂直于軸的直線交曲線于點(diǎn)B,試問(wèn):是否存在這樣的點(diǎn)A,使得曲線在點(diǎn)B處的切線與OA平行?若存在,求出點(diǎn)A的坐標(biāo);若不存在,說(shuō)明理由;

(Ⅲ)設(shè)函數(shù),若對(duì)于任意的,總存在,使得,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

已知函數(shù)處取得極值2 ,

(Ⅰ)求的解析式;

(Ⅱ)設(shè)A是曲線上除原點(diǎn)O外的任意一點(diǎn),過(guò)OA的中點(diǎn)且垂直于軸的直線交曲線于點(diǎn)B,試問(wèn):是否存在這樣的點(diǎn)A,使得曲線在點(diǎn)B處的切線與OA平行?若存在,求出點(diǎn)A的坐標(biāo);若不存在,說(shuō)明理由;

(Ⅲ)設(shè)函數(shù),若對(duì)于任意的,總存在,使得,求實(shí)數(shù)的取值范圍。

查看答案和解析>>


同步練習(xí)冊(cè)答案