16.解:本題共四種情況.設二次函數(shù)的圖像的對稱軸與x軸相交于點E.(1)如圖①. 查看更多

 

題目列表(包括答案和解析)

(本題滿分10分)已知二次函數(shù)的圖象與x軸分別交于點A、B,與y軸交于點C.點D是拋物線的頂點.

    (1)如圖①,連接AC,將△OAC沿直線AC翻折,若點O的對應點O'恰好落在該拋物

線的對稱軸上,求實數(shù)a的值;

    (2)如圖②,在正方形EFGH中,點E、F的坐標分別是(4,4)、(4,3),邊HG位于

邊EF的右側(cè).小林同學經(jīng)過探索后發(fā)現(xiàn)了一個正確的命題:“若點P是邊EH或邊HG上的

任意一點,則四條線段PA、PB、PC、PD不能與任何一個平行四邊形的四條邊對應相等(即

這四條線段不能構(gòu)成平行四邊形).”若點P是邊EF或邊FG上的任意一點,剛才的結(jié)論是

否也成立?請你積極探索,并寫出探索過程;

    (3)如圖②,當點P在拋物線對稱軸上時,設點P的縱坐標t是大于3的常數(shù),試問:是

否存在一個正數(shù)a,使得四條線段PA、PB、PC、PD與一個平行四邊形的四條邊對應相等

(即這四條線段能構(gòu)成平行四邊形)?請說明理由.

 

查看答案和解析>>

(本題滿分10分)已知二次函數(shù)的圖象與x軸分別交于點A、B,與y軸交于點C.點D是拋物線的頂點.

    (1)如圖①,連接AC,將△OAC沿直線AC翻折,若點O的對應點O'恰好落在該拋物

線的對稱軸上,求實數(shù)a的值;

    (2)如圖②,在正方形EFGH中,點E、F的坐標分別是(4,4)、(4,3),邊HG位于

邊EF的右側(cè).小林同學經(jīng)過探索后發(fā)現(xiàn)了一個正確的命題:“若點P是邊EH或邊HG上的

任意一點,則四條線段PA、PB、PC、PD不能與任何一個平行四邊形的四條邊對應相等(即

這四條線段不能構(gòu)成平行四邊形).”若點P是邊EF或邊FG上的任意一點,剛才的結(jié)論是

否也成立?請你積極探索,并寫出探索過程;

    (3)如圖②,當點P在拋物線對稱軸上時,設點P的縱坐標t是大于3的常數(shù),試問:是

否存在一個正數(shù)a,使得四條線段PA、PB、PC、PD與一個平行四邊形的四條邊對應相等

(即這四條線段能構(gòu)成平行四邊形)?請說明理由.

 

查看答案和解析>>

(本題12分)如圖,二次函數(shù)的圖象與x軸交于兩個不同的點A(-2,0)、B(4,0),與y軸交于點C(0,3),連結(jié)BC、AC,該二次函數(shù)圖象的對稱軸與x軸相交于點D.
(1)求這個二次函數(shù)的解析式、點D的坐標及直線BC的函數(shù)解析式;
(2)點Q在線段BC上,使得以點Q、D、B為頂點的三角形與△相似,求出點Q的坐標;
(3)在(2)的條件下,若存在點Q,請任選一個Q點求出△外接圓圓心的坐標.

查看答案和解析>>

(本題滿分12分)已知二次函數(shù)的圖象經(jīng)過點P(-2,5)

(1)求b的值并寫出當1<x≤3時y的取值范圍;

(2)設在這個二次函數(shù)的圖象上,

①當m=4時,能否作為同一個三角形三邊的長?請說明理由;

②當m取不小于5的任意實數(shù)時,一定能作為同一個三角形三邊的長,請說明理由。

 

 

 

查看答案和解析>>

(本題滿分12分)已知二次函數(shù)的圖象如圖.
(1)求它的對稱軸與軸交點D的坐標;
(2)將該拋物線沿它的對稱軸向上平移,設平移后的拋物線與軸,軸的交點分別為A、B、C三點,若∠ACB=90°,求此時拋物線的解析式;
(3)設(2)中平移后的拋物線的頂點為M,以AB為直徑,D為圓心作⊙D,試判斷直線CM與⊙D的位置關(guān)系,并說明理由.
 

查看答案和解析>>


同步練習冊答案