(2)當S20.即a1=a2=1.S2=2或a1=a2=-1.S2=-2. 查看更多

 

題目列表(包括答案和解析)

已知問題“設正數(shù)x,y滿足
1
x
+
2
y
=1
,求x+y的最值”有如下解法;
1
x
=cos2α,
2
y
=sin2α,α∈(0,
π
2
)
,
則x=sec2α=1+tan2α,y=2csc2α=2(1+cot2α),
所以,x+y=3+tan2α+2cot2α=3+tan2+
2
tan2α
≥3+2
2
,等號成立當且僅當tan2α=
2
tan2α
,即tan2α=
2
,此時x=1+
2
,y=2+
2

(1)參考上述解法,求函數(shù)y=
1-x
+2
x
的最大值.
(2)求函數(shù)y=2
x+1
-
x
(x≥0)
的最小值.

查看答案和解析>>

如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花園AMPN,要求B在AM上,D在AN上,且對角線MN過C點,|AB|=3米,|AD|=2米,

(I)要使矩形AMPN的面積大于32平方米,則AN的長應在什么范圍內(nèi)?

(II)當AN的長度是多少時,矩形AMPN的面積最?并求出最小面積.

(Ⅲ)若AN的長度不少于6米,則當AN的長度是多少時,矩形AMPN的面積最小?并求出最小面積.

【解析】本題主要考查函數(shù)的應用,導數(shù)及均值不等式的應用等,考查學生分析問題和解決問題的能力   第一問要利用相似比得到結論。

(I)由SAMPN > 32 得 > 32 ,

∵x >2,∴,即(3x-8)(x-8)> 0

∴2<X<8/3,即AN長的取值范圍是(2,8/3)或(8,+)

第二問,  

當且僅當

(3)令

∴當x > 4,y′> 0,即函數(shù)y=在(4,+∞)上單調(diào)遞增,∴函數(shù)y=在[6,+∞]上也單調(diào)遞增.                

∴當x=6時y=取得最小值,即SAMPN取得最小值27(平方米).

 

查看答案和解析>>

 當點(x,y)在直線x+3y=2上移動時,Z=3x+27y+3的最小值是(。

A.       。拢常2         C.6                  D.9

 

查看答案和解析>>

在實數(shù)的原有運算法則中,我們補充定義新運算“”如下:當a≥b時,ab=a;當a<b時,ab=b2;則函數(shù)f(x)=(1x)·x―(2x),x∈[―2,2]的最大值等于______(“·”與“-”分別為乘法與減法).

查看答案和解析>>

當x∈時,函數(shù)f(x)=sin x+cos x的值域是(  )

A.[-1, 1]               B.

C.[-2, 2]               D.[-1, 2]

 

查看答案和解析>>


同步練習冊答案