某班有兩個(gè)課外活動(dòng)小組組織觀看奧運(yùn)會(huì).其中第一小組有足球票6張.排球票4張,第二小組有足球票4張.排球票6張.甲從第一小組的10張票中任抽1張.乙從第二小組的10張票中任抽1張.(1) 求兩人都抽到足球票的概率,(2)求兩人中至少有一人抽到足球票的概率. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

假設(shè)某班級(jí)教室共有4扇窗戶,在每天上午第三節(jié)課上課預(yù)備鈴聲響起時(shí),每扇窗戶或被敞開或被關(guān)閉,且概率均為0.5,記此時(shí)教室里敞開的窗戶個(gè)數(shù)為.  

(1)求的分布列,以及的數(shù)學(xué)期望;

(2)若此時(shí)教室里有兩扇或兩扇以上的窗戶被關(guān)閉,班長(zhǎng)就會(huì)將關(guān)閉的窗戶全部敞開,否則維持原狀不變.記每天上午第三節(jié)課上課時(shí)該教室里敞開的窗戶個(gè)數(shù)為,求的數(shù)學(xué)期望.

 

查看答案和解析>>

(本題滿分12分)

在高二年級(jí)某班學(xué)生在數(shù)學(xué)校本課程選課過(guò)程中,已知第一小組與第二小組各有六位同學(xué).每位同學(xué)都只選了一個(gè)科目,第一小組選《數(shù)學(xué)運(yùn)算》的有1人,選《數(shù)學(xué)解題思想與方法》的有5人,第二小組選《數(shù)學(xué)運(yùn)算》的有2人,選《數(shù)學(xué)解題思想與方法》的有4人,現(xiàn)從第一、第二兩小組各任選2人分析選課情況.

   (Ⅰ)求選出的4 人均選《數(shù)學(xué)解題思想與方法》的概率;

   (Ⅱ)設(shè)為選出的4個(gè)人中選《數(shù)學(xué)運(yùn)算》的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

(本題滿分12分)

在高二年級(jí)某班學(xué)生在數(shù)學(xué)校本課程選課過(guò)程中,已知第一小組與第二小組各有六位同學(xué).每位同學(xué)都只選了一個(gè)科目,第一小組選《數(shù)學(xué)運(yùn)算》的有1人,選《數(shù)學(xué)解題思想與方法》的有5人,第二小組選《數(shù)學(xué)運(yùn)算》的有2人,選《數(shù)學(xué)解題思想與方法》的有4人,現(xiàn)從第一、第二兩小組各任選2人分析選課情況.

   (Ⅰ)求選出的4 人均選《數(shù)學(xué)解題思想與方法》的概率;

   (Ⅱ)設(shè)為選出的4個(gè)人中選《數(shù)學(xué)運(yùn)算》的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

(本題滿分12分)

某校為了探索一種新的教學(xué)模式,進(jìn)行了一項(xiàng)課題實(shí)驗(yàn),乙班為實(shí)驗(yàn)班,甲班為對(duì)比班,甲乙兩班的人數(shù)均為50人,一年后對(duì)兩班進(jìn)行測(cè)試,成績(jī)?nèi)缦卤恚ǹ偡郑?50分):

甲班

成績(jī)

頻數(shù)

4

20

15

10

1

乙班

成績(jī)

頻數(shù)

1

11

23

13

2

(1)現(xiàn)從甲班成績(jī)位于內(nèi)的試卷中抽取9份進(jìn)行試卷分析,請(qǐng)問(wèn)用什么抽樣方法更合理,并寫出最后的抽樣結(jié)果;

(2)根據(jù)所給數(shù)據(jù)可估計(jì)在這次測(cè)試中,甲班的平均分是101.8,請(qǐng)你估計(jì)乙班的平均分,并計(jì)算兩班平均分相差幾分;

(3)完成下面2×2列聯(lián)表,你認(rèn)為在犯錯(cuò)誤的概率不超過(guò)0.025的前提下, “這兩個(gè)班在這次測(cè)試中成績(jī)的差異與實(shí)施課題實(shí)驗(yàn)有關(guān)”嗎?并說(shuō)明理由。

 

成績(jī)小于100分

成績(jī)不小于100分

合計(jì)

甲班

26

50

乙班

12

50

合計(jì)

36

64

100

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

18.

查看答案和解析>>

(本題滿分12分)
某校為了探索一種新的教學(xué)模式,進(jìn)行了一項(xiàng)課題實(shí)驗(yàn),乙班為實(shí)驗(yàn)班,甲班為對(duì)比班,甲乙兩班的人數(shù)均為50人,一年后對(duì)兩班進(jìn)行測(cè)試,成績(jī)?nèi)缦卤恚ǹ偡郑?50分):
甲班

成績(jī)





頻數(shù)
4
20
15
10
1
乙班
成績(jī)





頻數(shù)
1
11
23
13
2
(1)現(xiàn)從甲班成績(jī)位于內(nèi)的試卷中抽取9份進(jìn)行試卷分析,請(qǐng)問(wèn)用什么抽樣方法更合理,并寫出最后的抽樣結(jié)果;
(2)根據(jù)所給數(shù)據(jù)可估計(jì)在這次測(cè)試中,甲班的平均分是101.8,請(qǐng)你估計(jì)乙班的平均分,并計(jì)算兩班平均分相差幾分;
(3)完成下面2×2列聯(lián)表,你認(rèn)為在犯錯(cuò)誤的概率不超過(guò)0.025的前提下, “這兩個(gè)班在這次測(cè)試中成績(jī)的差異與實(shí)施課題實(shí)驗(yàn)有關(guān)”嗎?并說(shuō)明理由。
 
成績(jī)小于100分
成績(jī)不小于100分
合計(jì)
甲班

26
50
乙班
12

50
合計(jì)
36
64
100
附:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828

查看答案和解析>>

1

2

3

4

5

6

7

8

9

10

11

12

D

B

B

B

C

C

B

B

B

C

C

C

13         400               14       

15          4                16      

17(本小題滿分12分)解:(1)由已知得

    …………………….6分

(2)

  ………………………….……….12分

18. (本小題滿分12分)解:記“甲從第一小組的10張票中任抽1張,抽到足球票”為事件A,“乙從第二小組的10張票中任抽1張,抽到足球票”為事件B;記“甲從第一小組的10張票中任抽1張,抽到排球票”為事件,“乙從張二小組的10張票中任抽1張,抽到排球票”為事件,于是

                              ……………………………………2分

由于甲(或乙)是否抽到足球票,對(duì)乙(或甲)是否抽到足球票沒有影響,因此A與B是相互獨(dú)立事件!4分

(1)甲、乙兩人都抽到足球票就是事件A、B同時(shí)發(fā)生,根據(jù)相互獨(dú)立事件的乘法概率公式,得到 ………………………7分

因此,兩人都抽到足球票的概率是     ………………………8分

(2)甲、乙兩人均未抽到足球票(事件、同時(shí)發(fā)生)的概率為

     ………………………9分

所以,兩人中至少有1人抽到足球票的概率為

    

因此,兩人中至少有1人抽到足球票的概率是   ………………………12分

19.(本小題滿分12分)

   (1)證明:取AB中點(diǎn)H,連結(jié)GH,HE,

∵E,F(xiàn),G分別是線段PA、PD、CD的中點(diǎn),

∴GH∥AD∥EF,

∴E,F(xiàn),G,H四點(diǎn)共面. ……………………1分

又H為AB中點(diǎn),

∴EH∥PB. ……………………………………2分

又EH面EFG,PB平面EFG,

∴PB∥平面EFG. ………………………………4分

   (2)解:取BC的中點(diǎn)M,連結(jié)GM、AM、EM,則GM//BD,

所成的角.………………5分

     在Rt△MAE中, ,

     同理,…………………………6分

,

∴在△MGE中,

………………7分

故異面直線EG與BD所成的角為arccos,………………………………8分

  解法二:建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,

則A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),

<table id="6gz67"><pre id="6gz67"></pre></table>
<menuitem id="6gz67"></menuitem>
        <button id="6gz67"><span id="6gz67"><legend id="6gz67"></legend></span></button>

           (1)證明:

             …………………………1分

            設(shè),

            即,

           

             ……………3分

           

            ∴PB∥平面EFG. …………………………………………………………………… 4分

           (2)解:∵,…………………………………………5分

            ,……………………… 7分

        故異面直線EG與BD所成的角為arccos,………………………………8分

        (3)   

          ,            

        設(shè)面的法向量

        取法向量

        A到平面EFG的距離=.…………………………12分

        20. (本小題滿分12分)解:(1)因?yàn)?sub>

           所以,

           而,因此,所以,即數(shù)列是首項(xiàng)和公比都為2的等比數(shù)列。  ………………………6分

        (3)    由(1)知,

        所以數(shù)列的通項(xiàng)公式為.………8分

              =

              =    ………………………12分

        21. (本小題滿分12分)解:(1)

        當(dāng)時(shí),由得,同,由得,,則函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞增區(qū)間為. ………3分列表如下:

        0

        +

        0

        -

        0

        所以,當(dāng)時(shí),函數(shù)的極大值為0,極小值為。 ………………6分

        (2)

        在區(qū)間上單調(diào)遞減,

        當(dāng)時(shí);

        當(dāng)時(shí).               ………………9分

        恒成立,

         解得,故的取值范圍是………………12分

         

        22.(本小題滿分14分)

           (1)解法一:設(shè),             …………1分

        當(dāng);                     …………3分

        當(dāng)                                              …………4分

        化簡(jiǎn)得不合

        故點(diǎn)M的軌跡C的方程是                                                   …………5分

           (1)解法二:的距離小于1,

        ∴點(diǎn)M在直線l的上方,

        點(diǎn)M到F(1,0)的距離與它到直線的距離相等              …………3分

        所以曲線C的方程為                                                           …………5分

           (2)當(dāng)直線m的斜率不存在時(shí),它與曲線C只有一個(gè)交點(diǎn),不合題意,

        設(shè)直線m的方程為,

        代入 (☆)                                 …………6分

        與曲線C恒有兩個(gè)不同的交點(diǎn)

        設(shè)交點(diǎn)A,B的坐標(biāo)分別為,

                                                                …………7分

        ①由

                 …………9分

        點(diǎn)O到直線m的距離,

        ………10分

        (舍去)

                                                                                        …………12分

        當(dāng)方程(☆)的解為

                                …………13分

        當(dāng)方程(☆)的解為

                   

            所以,           …………14分

         

         

         


        同步練習(xí)冊(cè)答案