19. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點(diǎn).

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;

   (Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;

   (Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時(shí),求弦長(zhǎng)|AB|的取值范圍.

查看答案和解析>>

1

2

3

4

5

6

7

8

9

10

11

12

D

B

B

B

C

C

B

B

B

C

C

C

13         400               14       

15          4                16      

17(本小題滿分12分)解:(1)由已知得

    …………………….6分

(2)

  ………………………….……….12分

18. (本小題滿分12分)解:記“甲從第一小組的10張票中任抽1張,抽到足球票”為事件A,“乙從第二小組的10張票中任抽1張,抽到足球票”為事件B;記“甲從第一小組的10張票中任抽1張,抽到排球票”為事件,“乙從張二小組的10張票中任抽1張,抽到排球票”為事件,于是

                              ……………………………………2分

由于甲(或乙)是否抽到足球票,對(duì)乙(或甲)是否抽到足球票沒有影響,因此A與B是相互獨(dú)立事件。……………………………………4分

(1)甲、乙兩人都抽到足球票就是事件A、B同時(shí)發(fā)生,根據(jù)相互獨(dú)立事件的乘法概率公式,得到 ………………………7分

因此,兩人都抽到足球票的概率是     ………………………8分

(2)甲、乙兩人均未抽到足球票(事件、同時(shí)發(fā)生)的概率為

     ………………………9分

所以,兩人中至少有1人抽到足球票的概率為

    

因此,兩人中至少有1人抽到足球票的概率是   ………………………12分

19.(本小題滿分12分)

   (1)證明:取AB中點(diǎn)H,連結(jié)GH,HE,

∵E,F(xiàn),G分別是線段PA、PD、CD的中點(diǎn),

∴GH∥AD∥EF,

∴E,F(xiàn),G,H四點(diǎn)共面. ……………………1分

又H為AB中點(diǎn),

∴EH∥PB. ……………………………………2分

又EH面EFG,PB平面EFG,

∴PB∥平面EFG. ………………………………4分

   (2)解:取BC的中點(diǎn)M,連結(jié)GM、AM、EM,則GM//BD,

所成的角.………………5分

     在Rt△MAE中, ,

     同理,…………………………6分

,

∴在△MGE中,

………………7分

故異面直線EG與BD所成的角為arccos,………………………………8分

  解法二:建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,

則A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),

<ol id="hfv5y"><strong id="hfv5y"><abbr id="hfv5y"></abbr></strong></ol>
<nav id="hfv5y"><font id="hfv5y"><small id="hfv5y"></small></font></nav>
    <menuitem id="hfv5y"><source id="hfv5y"><dd id="hfv5y"></dd></source></menuitem>

          1.    (1)證明:

                 …………………………1分

                設(shè),

                即

               

                 ……………3分

                ,

                ∴PB∥平面EFG. …………………………………………………………………… 4分

               (2)解:∵,…………………………………………5分

                ,……………………… 7分

            故異面直線EG與BD所成的角為arccos,………………………………8分

            (3)   

              ,            

            設(shè)面的法向量

            取法向量

            A到平面EFG的距離=.…………………………12分

            20. (本小題滿分12分)解:(1)因?yàn)?sub>

               所以,

               而,因此,所以,即數(shù)列是首項(xiàng)和公比都為2的等比數(shù)列。  ………………………6分

            (3)    由(1)知

            所以數(shù)列的通項(xiàng)公式為.………8分

                  =

                  =    ………………………12分

            21. (本小題滿分12分)解:(1)

            當(dāng)時(shí),由得,同,由得,,則函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞增區(qū)間為. ………3分列表如下:

            0

            +

            0

            -

            0

            所以,當(dāng)時(shí),函數(shù)的極大值為0,極小值為。 ………………6分

            (2)

            在區(qū)間上單調(diào)遞減,

            當(dāng)時(shí);

            當(dāng)時(shí).               ………………9分

            恒成立,

             解得,故的取值范圍是………………12分

             

            22.(本小題滿分14分)

               (1)解法一:設(shè),             …………1分

            當(dāng);                     …………3分

            當(dāng)                                              …………4分

            化簡(jiǎn)得不合

            故點(diǎn)M的軌跡C的方程是                                                   …………5分

               (1)解法二:的距離小于1,

            ∴點(diǎn)M在直線l的上方,

            點(diǎn)M到F(1,0)的距離與它到直線的距離相等              …………3分

            所以曲線C的方程為                                                           …………5分

               (2)當(dāng)直線m的斜率不存在時(shí),它與曲線C只有一個(gè)交點(diǎn),不合題意,

            設(shè)直線m的方程為,

            代入 (☆)                                 …………6分

            與曲線C恒有兩個(gè)不同的交點(diǎn)

            設(shè)交點(diǎn)A,B的坐標(biāo)分別為,

                                                                    …………7分

            ①由,

                     …………9分

            點(diǎn)O到直線m的距離,

            ………10分

            ,

            (舍去)

                                                                                            …………12分

            當(dāng)方程(☆)的解為

                                    …………13分

            當(dāng)方程(☆)的解為

                       

                所以,           …………14分

             

             

             


            同步練習(xí)冊(cè)答案