④隨機(jī)變量服從...則,其中.真命題的序號是 . 查看更多

 

題目列表(包括答案和解析)

已知下列命題:

①已知、為兩個命題,若“”為假命題,則“”為真命題;

②已知隨機(jī)變量服從正態(tài)分布,且,則;

③“”是“一元二次方程有實(shí)根”的必要不充分條件;

④命題“若,則”的否命題為:若,則

其中不正確的命題個數(shù)為

                                                

查看答案和解析>>

給出下列四個命題:
①命題“?x∈R,cosx>0”的否定是:“?x∈R,cosx≤0”;
②若lga+lgb=lg(a+b),則a+b的最大值為4;
③定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f(x),則f(6)的值為0;
④已知隨機(jī)變量ζ服從正態(tài)分布N(1,σ2),P(ζ≤5)=0.81,則P(ζ≤-3)=0.19;
其中真命題的序號是    (請把所有真命題的序號都填上).

查看答案和解析>>

已知正態(tài)分布的密度曲線是,給出以下四個命題:

①對任意,成立;

②如果隨機(jī)變量服從,且,那么是R上的增函數(shù);

③如果隨機(jī)變量服從,那么的期望是108,標(biāo)準(zhǔn)差是100;

④隨機(jī)變量服從,,,則;其中,真命題的序號是   ________   .(寫出所有真命題序號)

查看答案和解析>>

(2013•臨沂一模)給出下列四個命題:
①命題“?x∈R,cosx>0”的否定是:“?x∈R,cosx≤0”;
②若lga+lgb=lg(a+b),則a+b的最大值為4;
③定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f(x),則f(6)的值為0;
④已知隨機(jī)變量ζ服從正態(tài)分布N(1,σ2),P(ζ≤5)=0.81,則P(ζ≤-3)=0.19;
其中真命題的序號是
①③④
①③④
(請把所有真命題的序號都填上).

查看答案和解析>>

以下四個命題中:

①從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測,這樣的抽樣是分層抽樣;

②兩個隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值越接近于1;

③在某項(xiàng)測量中,測量結(jié)果服從正態(tài)分布.若在(0,1)內(nèi)取值的概率為0.4,則在(0,2)內(nèi)取值的概率為0.8 ;

④對分類變量X與Y的隨機(jī)變量K2的觀測值k來說,k越小,判斷“X與Y有關(guān)系”的把握程度越大.

其中真命題的個數(shù)為(  )

A.1   B.2    C.3    D.4

 

查看答案和解析>>

一.選擇題:CDDA  DDBA  BBDC .

二.填空題:(13)60,(14),(15),(16)①②④ .

三.解答題:

(17)解:(Ⅰ)∵

.                 ………3分

∴令,        ………4分

的遞減區(qū)間是,;              ………5分

,           ………6分

的遞增區(qū)間是,.              ………7分

(Ⅱ)∵,∴,                     ………8分

      又,所以,根據(jù)單位圓內(nèi)的三角函數(shù)線

可得.                                     ………10分

(18)解:由題意,                                       ………1分

,                                        ………2分

,                              ………4分

,                            ………6分

,                      ………8分

 

 

文本框:  
2	3	4	5
 
 
 
 
 


所以的分布列為:                                    

 

 

 

………9分

.          ………12分

(19)解:(Ⅰ)由題設(shè)可知,.                    ………1分

,,

,                                 ………3分

,              ………5分

.                                             ………6分

(Ⅱ)設(shè).                        ………7分

顯然,時,,                                       ………8分

, ∴當(dāng)時,,∴,                       

當(dāng)時,,∴,                             ………9分

當(dāng)時,,∴,                        ………10分

當(dāng)時,恒成立,

恒成立,                               ………11分

∴存在,使得.                                 ………12分

(20)解:(Ⅰ)∵PA⊥平面ABCD,PC⊥AD,∴AC⊥AD.                 ………1分

設(shè)AB=1,則AC=,CD=2.                                     ………2分

設(shè)F是AC與BD的交點(diǎn),∵ABCD為梯形,

∴△ABF~△CDF, ∴DF:FB=2:1,                               ………3分

又PE:EB=2:1,∴DF:FB=PE:EB,∴EF∥PD,                   ………5分

又EF在平面ACE內(nèi),∴PD∥平面ACE.                             ………6分

(Ⅱ)以A為坐標(biāo)原點(diǎn),AB為y軸,AP為z軸建立空間直角坐標(biāo)系,如圖.

設(shè)AB=1,則,,,             ………7分

,,,     ………8分

設(shè),∵,,∴,  …9分

設(shè),∵,,∴, …10分

,      ………11分

∴二面角A-EC-P的大小為.………12分

注:學(xué)生使用其它解法應(yīng)同步給分.

 

 

(21)解:(Ⅰ)設(shè)所求的橢圓E的方程為,                ………1分

、,將代入橢圓得,     ………2分

,又,∴ ,                        ………3分

, ………4分,       ,              ………5分

∴所求的橢圓E的方程為.                                ………6分

(Ⅱ)設(shè),則,          ………7分

又設(shè)MN的中點(diǎn)為,則以上兩式相減得:,         ………8分

,………9分,     ,                  ………10分

又點(diǎn)在橢圓內(nèi),∴,                               ………11分

即,,∴.                         ………12分

注:學(xué)生使用其它解法應(yīng)同步給分.

(22)解:(Ⅰ)∵,            ……2分

,

時,遞增,時,遞減,時,遞增,

所以的極大值點(diǎn)為,極小值點(diǎn)為,                     ……4分

,,,              ……5分

的圖像如右圖,供評卷老師參考)

所以,的最小值是.                                      ……6分

(II)由(Ⅰ)知的值域是:

當(dāng)時,為,當(dāng)時,為.                ……8分                 

的值域是為,             ……9分

所以,當(dāng)時,令,并解得,

當(dāng)時,令,無解.

因此,的取值范圍是.                                     ……12分

注:學(xué)生使用其它解法應(yīng)同步給分.

 

 


同步練習(xí)冊答案