8.已知?均為非零向量. 的A.充要條件 B.充分而不必要的條件……查看更多

 

題目列表(包括答案和解析)

(08年泉州一中適應(yīng)性練習(xí)文)已知均為非零向量,   的(   )

A.充要條件                B.充分而不必要的條件

C.必要而不充分的條件      D.既不充分也不必要的條件

查看答案和解析>>

(08年黃岡中學(xué)二模文)已知均為非零向量,條件   條件的夾角為銳角,則成立的

A.充要條件                                     B.充分而不必要的條件

C.必要而不充分的條件                   D.既不充分也不必要的條件

查看答案和解析>>

一、選擇題

 1-6  C  A  B  B   B   D    7-12   B  C  B  B  B  C

二、填空 

 13.  4     14.      15. 2    16.

三、解答題

17.(1)解:由

       有    ……6分

,  ……8分

由余弦定理

      當(dāng)……12分

∴PB∥平面EFG. ………………………………3分

   (2)解:取BC的中點(diǎn)M,連結(jié)GM、AM、EM,則GM//BD,

所成的角.………………4分

     在Rt△MAE中,

     同理,…………………………5分

又GM=

∴在△MGE中,

………………6分

故異面直線EG與BD所成的角為arccos,………………………………7分

   (3)假設(shè)在線段CD上存在一點(diǎn)Q滿足題設(shè)條件,

    <input id="11661"></input>

    ∵ABCD是正方形,△PAD是直角三角形,且PA=AD=2,

    ∴AD⊥AB,AD⊥PA.

    又AB∩PA=A,

    ∴AD⊥平面PAB. ……………………………………8分

    又∵E,F(xiàn)分別是PA,PD中點(diǎn),

    ∴EF∥AD,∴EF⊥平面PAB.

    又EF面EFQ,

    ∴面EFQ⊥面PAB. …………………………………9分

    過(guò)A作AT⊥ER于T,則AT⊥平面EFQ,

    ∴AT就是點(diǎn)A到平面EFQ的距離. ……………………………………………10分

    設(shè),

        在, …………………………11分

        解得

        故存在點(diǎn)Q,當(dāng)CQ=時(shí),點(diǎn)A到平面EFQ的距離為0.8. ……………………… 12分

    解法二:建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,

    則A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),

    1. <source id="11661"><optgroup id="11661"><menuitem id="11661"></menuitem></optgroup></source>
        <noscript id="11661"></noscript>
            <tt id="11661"><dl id="11661"></dl></tt>

               (1)證明:

                 …………………………1分

                設(shè),

                即

               

                 ……………2分

                ,

                ∴PB∥平面EFG. …………………………………………………………………… 3分

               (2)解:∵,…………………………………………4分

                ,……………………… 6分

             

            20.(本小題滿分12分)

            解:(1)數(shù)列{an}的前n項(xiàng)和,

                                                  …………2分

            ,

                                       …………3分

            是正項(xiàng)等比數(shù)列,

             

            ,                                               …………4分

            公比,                                                                                    …………5分

            數(shù)列                                  …………6分

               (2)解法一:,

                                    …………8分

            當(dāng),                                      …………10分

            故存在正整數(shù)M,使得對(duì)一切M的最小值為2…………12分

               (2)解法二:,

            ,         …………8分

            ,

            函數(shù)…………10分

            對(duì)于

            故存在正整數(shù)M,使得對(duì)一切恒成立,M的最小值為2…………12

            21.解:  1)設(shè)橢圓的焦距為2c,因?yàn)?sub>,所以有,故有。從而橢圓C的方程可化為:      ①                     ………2分

            易知右焦點(diǎn)F的坐標(biāo)為(),

            據(jù)題意有AB所在的直線方程為:   ②                     ………3分

            由①,②有:         ③

            設(shè),弦AB的中點(diǎn),由③及韋達(dá)定理有:

             

            所以,即為所求。                                    ………5分

            2)顯然可作為平面向量的一組基底,由平面向量基本定理,對(duì)于這一平面內(nèi)的向量,有且只有一對(duì)實(shí)數(shù),使得等式成立。設(shè),由1)中各點(diǎn)的坐標(biāo)有:

            ,所以

            。                                   ………7分

            又點(diǎn)在橢圓C上,所以有整理為。           ④

            由③有:。所以

               ⑤

            又A?B在橢圓上,故有                ⑥

            將⑤,⑥代入④可得:。                                ………11分

            對(duì)于橢圓上的每一個(gè)點(diǎn),總存在一對(duì)實(shí)數(shù),使等式成立,而

            在直角坐標(biāo)系中,取點(diǎn)P(),設(shè)以x軸正半軸為始邊,以射線OP為終邊的角為,顯然 。

            也就是:對(duì)于橢圓C上任意一點(diǎn)M ,總存在角∈R)使等式:=cos+sin成立。                                                 ………12分

             

            22.  …1分

            上無(wú)極值點(diǎn)      ……………………………2分

            當(dāng)時(shí),令,隨x的變化情況如下表:

            x

            0

            遞增

            極大值

            遞減

            從上表可以看出,當(dāng)時(shí),有唯一的極大值點(diǎn)

            (2)解:當(dāng)時(shí),處取得極大值

            此極大值也是最大值。

            要使恒成立,只需

            的取值范圍是     …………………………………………………8分

            (3)證明:令p=1,由(2)知:

                    …………………………………………………………10分

                     ……………………………………………14分


            同步練習(xí)冊(cè)答案
              关 闭