過拋物線的焦點作直線l交拋物線于A.B兩點.若線段AB中點的橫坐標為3.則等于闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈囩磽瀹ュ拑韬€殿喖顭烽弫鎰緞婵犲嫷鍚呴梻浣瑰缁诲倿骞夊☉銏犵缂備焦岣块崢閬嶆⒑闂堟稓澧曢柟鍐查叄椤㈡棃顢橀姀锛勫幐闁诲繒鍋涙晶钘壝虹€涙ǜ浜滈柕蹇婂墲缁€瀣煛娴g懓濮嶇€规洖宕埢搴∥熼幁宥嗘皑缁辨捇宕掑▎鎺戝帯闂佺ǹ顑嗛幑鍥х暦閺囥垹绠悷娆欑岛閸嬫捇鏁冮崒娑樷偓濠氭煢濡警妲奸柟鑺ユ礋濮婃椽宕崟顒€绐涢梺鍝ュУ閹稿墽鍒掔紒妯稿亝闁告劏鏅濋崢浠嬫⒑闁稑宓嗘繛浣冲嫭娅犳い鏍仦閻撶喐绻濋棃娑欏闁抽攱甯炵槐鎺撴綇閵娿儲璇為梺璇″枟閻熲晠銆佸Δ鍛劦妞ゆ帒瀚粈澶愭煏閸繍妲归柣鎾跺枛閻擃偊宕堕妸锔规嫽缂備胶濮烽崑銈夊蓟濞戙垹鐓涢柛鎰╁妺濡叉劕螖閻橀潧浠滄い鎴濐樀瀵偊宕掗悙鏉戠檮婵犮垼娉涢ˇ浼存儓韫囨稒鈷戦悹鍥у级閸炲銇勯銏╂Ц閻撱倝鏌″搴d汗鐟滅増甯掔壕濂告煟閹邦剙绾ч弶鍫濈墦濮婅櫣鎹勯妸銉︾亖婵犳鍠氶弫濠氬春濞戙垹绠i柨鏃傛櫕閸樼敻姊洪崗鑲┿偞闁哄懏绋掔粋鎺戔堪閸喓鍘撻悷婊勭矒瀹曟粌顫濋鐐存そ閹垽鎮℃惔锝囨毇闁荤喐绮嶉崹鍦垝鐠囨祴妲堟俊顖炴敱椤秴鈹戦埥鍡楃仴闁稿鍔欏鎼佸焵椤掑嫭鈷掗柛灞剧懅椤︼妇绱撳鍜冨伐閾荤偤鏌涜椤ㄥ棝宕愰崸妤佺叆闁哄洨鍋涢埀顒€鎽滄竟鏇熺節濮橆厼鈧敻鏌ㄥ┑鍡涱€楅柡瀣枛閺岋綁骞樼€涙ḿ顦ㄩ梺闈涙搐鐎氫即鐛崶顒€绀堝ù锝囨嚀娴犲湱绱撻崒娆掑厡濠殿喚鏁婚弫鍐閵堝懓鎽曢梺鎸庣箓椤︿即宕戦崟顖涚厸濠㈣泛顑呴悘銉︺亜椤愩垺鎼愰柍瑙勫灴椤㈡瑧娑甸悜鐣屽弽婵犵數鍋涢幏鎴犲緤閸啣锝夊箛閺夎法顔婇梺鐟板暱绾绢參宕伴弽顓炵鐟滅増甯掗幑鑸点亜閹捐泛鏋庢繛鍛懇濮婂宕掑顑藉亾瀹勬噴褰掑炊椤掑鏅悷婊冪箻楠炴垿濮€閵堝懐顓哄┑鐘绘涧閻楀﹤鈻撻弴銏♀拺闁告稑锕﹂埥澶愭煥閺囶亞鎮奸柟骞垮灲瀹曞崬鈽夊▎鎴濆箺闂備線娼х换鍡涘箠濮樿泛鎹舵い鎾跺Х閻掑ジ鏌f惔顖滅У闁稿鐒︾粋宥呪堪閸喓鍘搁悗骞垮劚閸燁偅淇婃禒瀣厽闁靛⿵绠戦悘锕傛煏閸パ冾伃鐎殿噮鍓熷畷鐘绘闁告凹鍋勯埞鎴︻敊绾兘绶村┑鐐叉嫅缂嶄線鐛径鎰妞ゆ棁鍋愰ˇ鏉款渻閵堝棗鍧婇柛瀣崌閺屾盯骞樺畷鍥┬ㄥ┑顔硷攻濡炰粙鐛弽顓熷€烽柟缁樺俯濞煎骸鈹戦悙鑼憼缂侇喖绻愰埢鏂库槈閵忊晜鏅梺鎸庣箓椤︿粙寮崘顔界叆婵犻潧妫楅弳娆徝瑰⿰鍕疄婵﹥妞藉畷銊︾節閸屾凹娼婇梻浣告惈閹冲繒鎹㈤崼婵堟殾闁靛骏绱曢々鐑芥倵閿濆骸浜為柛妯兼暬濮婅櫣绮欑捄銊ь啈闂佺ǹ顑嗛崝娆忣嚕閸愬樊娼ㄩ柍褜鍓熷璇测槈閵忕姈鈺呮煏婢舵ê鏋ら柛姘儔閹鎲撮崟顒€顦╅梺鎼炲姀濞夋盯顢氶敐鍡欑瘈婵﹩鍎甸妸鈺傜叆闁哄啠鍋撻柛搴㈠▕閻涱喖顓兼径瀣ф嫽婵炶揪绲介幉锟犲疮閻愮儤鐓曟い顓熷灥閻忥妇鈧娲橀崝娆忣嚕娴犲鏁冮柣鏃囨腹婢规洖鈹戦缁撶細闁稿鎸鹃埀顒佺啲閹凤拷查看更多

 

題目列表(包括答案和解析)

過拋物線的焦點作直線l交拋物線于A、B兩點,若線段AB中點的橫坐標為3,則等于(�。�

A.10               B.8                C.6                D.4

 

查看答案和解析>>

過拋物線的焦點作直線l交拋物線于A、B兩點,若線段

AB中點的橫坐標為3,則等于(   )

A.10        B.8      C.6      D.4

 

查看答案和解析>>

過拋物線的焦點作直線l交拋物線于A、B兩點,若線段

AB中點的橫坐標為3,則等于(   )

A.10        B.8      C.6      D.4

 

查看答案和解析>>

過拋物線的焦點作直線l交拋物線于A,B兩點,分別過A,B作拋物線的切線,則的交點P的軌跡方程是(    )

A.B.C.D.

查看答案和解析>>

過拋物線的焦點作直線l交拋物線于A,B兩點,分別過A,B作拋物線的切線,則的交點P的軌跡方程是(    )

A.B.C.D.

查看答案和解析>>

一、選擇題

 1-6  C  A  B  B   B   D    7-12   B  C  B  B  B  C

二、填空 

 13.  4     14.      15. 2    16.

三、解答題

17.(1)解:由

       有    ……6分

,  ……8分

由余弦定理

      當……12分

∴PB∥平面EFG. ………………………………3分

   (2)解:取BC的中點M,連結(jié)GM、AM、EM,則GM//BD,

所成的角.………………4分

     在Rt△MAE中,

     同理,…………………………5分

又GM=,

∴在△MGE中,

………………6分

故異面直線EG與BD所成的角為arccos,………………………………7分

   (3)假設在線段CD上存在一點Q滿足題設條件,

∵ABCD是正方形,△PAD是直角三角形,且PA=AD=2,

∴AD⊥AB,AD⊥PA.

又AB∩PA=A,

∴AD⊥平面PAB. ……………………………………8分

又∵E,F(xiàn)分別是PA,PD中點,

∴EF∥AD,∴EF⊥平面PAB.

又EF面EFQ,

∴面EFQ⊥面PAB. …………………………………9分

過A作AT⊥ER于T,則AT⊥平面EFQ,

∴AT就是點A到平面EFQ的距離. ……………………………………………10分

    在, …………………………11分

    解得

    故存在點Q,當CQ=時,點A到平面EFQ的距離為0.8. ……………………… 12分

解法二:建立如圖所示的空間直角坐標系A-xyz,

則A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),

         (1)證明:

           …………………………1分

          設,

          即,

         

           ……………2分

          ,

          ∴PB∥平面EFG. …………………………………………………………………… 3分

         (2)解:∵,…………………………………………4分

          ,……………………… 6分

       

      20.(本小題滿分12分)

      解:(1)數(shù)列{an}的前n項和,

                                            …………2分

      ,

                                 …………3分

      是正項等比數(shù)列,

       

      ,                                               …………4分

      公比,                                                                                    …………5分

      數(shù)列                                  …………6分

         (2)解法一:,

                              …………8分

      ,

      ,                                      …………10分

      故存在正整數(shù)M,使得對一切M的最小值為2…………12分

         (2)解法二:,

      ,         …………8分

      ,

      函數(shù)…………10分

      對于

      故存在正整數(shù)M,使得對一切恒成立,M的最小值為2…………12

      21.解:  1)設橢圓的焦距為2c,因為,所以有,故有。從而橢圓C的方程可化為:      ①                     ………2分

      易知右焦點F的坐標為(),

      據(jù)題意有AB所在的直線方程為:   ②                     ………3分

      由①,②有:         ③

      ,弦AB的中點,由③及韋達定理有:

       

      所以,即為所求。                                    ………5分

      2)顯然可作為平面向量的一組基底,由平面向量基本定理,對于這一平面內(nèi)的向量,有且只有一對實數(shù),使得等式成立。設,由1)中各點的坐標有:

      ,所以

      。                                   ………7分

      又點在橢圓C上,所以有整理為。           ④

      由③有:。所以

         ⑤

      又A?B在橢圓上,故有                ⑥

      將⑤,⑥代入④可得:。                                ………11分

      對于橢圓上的每一個點,總存在一對實數(shù),使等式成立,而

      在直角坐標系中,取點P(),設以x軸正半軸為始邊,以射線OP為終邊的角為,顯然

      也就是:對于橢圓C上任意一點M ,總存在角∈R)使等式:=cos+sin成立。                                                 ………12分

       

      22.  …1分

      上無極值點      ……………………………2分

      時,令,隨x的變化情況如下表:

      x

      0

      遞增

      極大值

      遞減

      從上表可以看出,當時,有唯一的極大值點

      (2)解:當時,處取得極大值

      此極大值也是最大值。

      要使恒成立,只需

      的取值范圍是     …………………………………………………8分

      (3)證明:令p=1,由(2)知:

              …………………………………………………………10分

               ……………………………………………14分


      同步練習冊答案
      闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈囩磽瀹ュ拑韬€殿喖顭烽弫鎰緞婵犲嫷鍚呴梻浣瑰缁诲倿骞夊☉銏犵缂備焦岣块崢閬嶆⒑闂堟稓澧曢柟鍐查叄椤㈡棃顢橀姀锛勫幐闁诲繒鍋犻褔鍩€椤掍胶绠撻柣锝囧厴椤㈡洟鏁冮埀顒€鏁梻浣瑰濡焦鎱ㄩ妶澶嬪剨閹肩补妾ч弨浠嬫煟閹邦剚鈻曢柛銈囧枎閳规垿顢欓悙顒佹瘓闂佺娅曠换鍐Χ閿濆绀冮柕濞у啫绠i梻鍌欒兌閹虫捇顢氶銏犵;婵炴垶姘ㄦ稉宥夋煟濡偐甯涢柍閿嬪灩缁辨帞鈧綆浜滈惃锟犳煛閳ь剛绱掑Ο闀愮盎闂侀潧枪閸庢煡藟閵忊槅娈介柣鎰皺婢э箑鈹戦埄鍐憙妞わ富鍣i弻娑氣偓锝庡亝瀹曞本淇婇銏犳殭闁宠棄顦埢搴ょ疀閺冣偓閻eジ姊虹拠鍙夊攭妞ゎ偄顦叅闁哄诞灞芥闂佸壊鍋呭ú鏍不閻愮儤鐓忓┑鐐茬仢閸斿瓨绻涢幘鎰佺吋闁诡喖缍婂畷鍫曨敂閸曨厼顦╁┑鐘灱椤煤閻斿娼栫紓浣股戞刊鎾煣韫囨洘鍤€缂佹せ鍓濈换娑㈠箻鐎靛壊鏆″銈冨妼閿曘倝鎮鹃悜钘夌骇閹煎瓨鎸婚~宥呪攽椤旂煫顏囥亹婢跺瞼绠斿璺号堥弨浠嬫煟閹邦厽缍戦柣蹇ョ畵閹筹綁濡堕崱鏇犵畾闂佸湱绮敮鐐存櫠濞戞氨纾肩紓浣贯缚濞插鈧娲栧畷顒冪亽闂佸憡绻傜€氬嘲岣块弮鈧穱濠囨倷椤忓嫧鍋撻弴鐘冲床闁圭儤顨呯粣妤呮煛瀹擃喖鏈紞搴g磽閸屾瑧鍔嶉拑鍗炩攽椤栨稒灏﹂柡灞诲€濋獮渚€骞掗幋婵喰戦梻渚€娼уΛ妤呮晝椤忓嫷娼栨繛宸簼椤ュ牓鏌嶉崫鍕殶閼叉牜绱撻崒娆掑厡濠殿喚鏁婚獮鎴﹀炊椤掍礁浠掑銈嗘濞夋洟鎮块埀顒€鈹戦悙鏉戠仸闁荤噦绠戦埢宥夊閵堝棌鎷洪柣鐘充航閸斿苯鈻嶉幇鐗堢厵闁告垯鍊栫€氾拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈囩磽瀹ュ拑韬€殿喖顭烽幃銏ゅ礂鐏忔牗瀚介梺璇查叄濞佳勭珶婵犲伣锝夘敊閸撗咃紲闂佺粯鍔﹂崜娆撳礉閵堝洨纾界€广儱鎷戦煬顒傗偓娈垮枛椤兘骞冮姀銈呯閻忓繑鐗楃€氫粙姊虹拠鏌ュ弰婵炰匠鍕彾濠电姴浼i敐澶樻晩闁告挆鍜冪床闂備胶绮崝锕傚礈濞嗘挸绀夐柕鍫濇川绾剧晫鈧箍鍎遍幏鎴︾叕椤掑倵鍋撳▓鍨灈妞ゎ厾鍏橀獮鍐閵堝懐顦ч柣蹇撶箲閻楁鈧矮绮欏铏规嫚閺屻儱寮板┑鐐板尃閸曨厾褰炬繝鐢靛Т娴硷綁鏁愭径妯绘櫓闂佸憡鎸嗛崪鍐簥闂傚倷鑳剁划顖炲礉閿曞倸绀堟繛鍡樺灩閻棝鏌涢幇銊︽澓濞存粍绮撻弻锟犲炊瑜庨ˉ婊勭箾鐏炲倸鈧繈骞冮垾鎰佹建闁逞屽墴瀵鎮㈤崨濠勭Ф婵°倧绲介崯顖烆敁瀹ュ鈷戠紒瀣儥閸庢劙鏌涢弮鈧悷鈺侇嚕鐠囨祴妲堟俊顖炴敱閻庡妫呴銏$カ缂佽尙鍋撻弲銉╂⒒閸屾瑦绁版い鏇熺墵瀹曟澘螖閸涱喖浠悷婊冪箰鍗遍柟鐗堟緲缁犲鎮楀☉娅亪顢撻幘缁樷拺闁告稑锕︾粻鎾绘倵濮樺崬鍘撮柛鈹惧亾濡炪倖宸婚崑鎾绘煟椤撶偛鈧灝顕g拠娴嬫闁靛繒濮堥埡鍛厪濠㈣鍨伴崯浼村储娴犲鐓熼幖娣焺閸熷繘鏌涢悩宕囧⒌闁炽儻绠撻弻銊р偓锝傛櫇缁犳岸姊鸿ぐ鎺擄紵缂佲偓娓氣偓閹€斥槈閵忥紕鍘遍柣蹇曞仜婢т粙鎮¢婊呯<闁靛ǹ鍊楅惌娆愭叏婵犲嫮甯涢柟宄版嚇瀹曘劑妫冨☉姘毙ㄩ悗娈垮枤閺佸銆佸Δ鍛<婵犲﹤鎳愰崢顖炴⒒娴d警鏀伴柟娲讳簽閳ь剟娼ч惌鍌氼嚕椤愶箑纾奸柣鎰嚟閸欏棝姊虹紒妯荤闁稿﹤婀遍埀顒佺啲閹凤拷