(文)過拋物線的焦點作直線交拋物線于...兩點.若.則等于( ) A.4p B.5p C.6p D.8p 查看更多

 

題目列表(包括答案和解析)

(08年黃岡市質(zhì)檢文) (13分) 過拋物線的焦點作直線與拋物線交于.

⑴求證:△不是直角三角形;

⑵當的斜率為時,拋物線上是否存在點,使△為直角三角形且為直角(軸下方)?若存在,求出所有的點;若不存在,說明理由.

查看答案和解析>>

(文)已知拋物線C:y2=2px(p>0)的準線為l,焦點為F.⊙M的圓心在x軸的正半軸上,且與y軸相切.過原點O作傾斜角為數(shù)學公式的直線,交l于點A,交⊙M于另一點B,且AO=OB=2.
(Ⅰ)求⊙M和拋物線C的標準方程;
(Ⅱ)過圓心M的直線交拋物線C于P、Q兩點,問數(shù)學公式是否為定值,若是定值,求出該定值.

查看答案和解析>>

(文)已知拋物線C:y2=2px(p>0)的準線為l,焦點為F.⊙M的圓心在x軸的正半軸上,且與y軸相切.過原點O作傾斜角為的直線,交l于點A,交⊙M于另一點B,且AO=OB=2.
(Ⅰ)求⊙M和拋物線C的標準方程;
(Ⅱ)過圓心M的直線交拋物線C于P、Q兩點,問是否為定值,若是定值,求出該定值.

查看答案和解析>>

(文科學生做)過拋物線的焦點F作一直線交拋物線于P、Q兩點,若線段PF與FQ的長分別為p、q,則等于            (   ) 

   A.          B.       C.       D.

 

查看答案和解析>>

(08年哈師大附中文) 過拋物線的焦點作一條直線與拋物線相交于兩點,且,則這樣的直線有

   A.一條    B.兩條    C.三條    D.不存在

查看答案和解析>>

一、選擇

1.A 2.B 3.B 4.D 5.(理)C。ㄎ模〢 6.B 7.A 8.B 9.A 

10.B 11.(理)A (文)C 12.B 

二、填空

13.(理) (文)25,60,15 14.-672 15.2.5小時 16.(理)①,④(文)(1),;(1),;(4),

三、解答題

  17.解析:設fx)的二次項系數(shù)為m,其圖象上兩點為(1-x,)、B(1+x,)因為,所以,由x的任意性得fx)的圖象關于直線x=1對稱,若m>0,則x≥1時,fx)是增函數(shù),若m<0,則x≥1時,fx)是減函數(shù).

  ∵ ,,,,

,

  ∴ 當時,

,

  ∵ , ∴ 

  當時,同理可得

  綜上:的解集是當時,為

  當時,為,或

  18.解析:(理)(1)設甲隊在第五場比賽后獲得冠軍為事件M,則第五場比賽甲隊獲勝,前四場比賽甲隊獲勝三場

  依題意得

 。2)設甲隊獲得冠軍為事件E,則E包含第四、第五、第六、第七場獲得冠軍四種情況,且它們被彼此互斥.

  ∴ 

(文)①設甲袋中恰有兩個白球為事件A

 

②設甲袋內(nèi)恰好有4個白球為事件B,則B包含三種情況.

甲袋中取2個白球,且乙袋中取2個白球,②甲袋中取1個白球,1個黑球,且乙袋中取1個白球,1個黑球,③甲、乙兩袋中各取2個黑球.

∴ 

  19.解析:(1)取中點E,連結ME、,

  ∴ MCEC. ∴ MC. ∴ ,MC,N四點共面.

 。2)連結BD,則BD在平面ABCD內(nèi)的射影.

  ∵ , ∴ Rt△CDM~Rt△BCD,∠DCM=∠CBD

  ∴ ∠CBD+∠BCM=90°.  ∴ MCBD.  ∴ 

 。3)連結,由是正方形,知

  ∵ MC, ∴ ⊥平面

  ∴ 平面⊥平面

 。4)∠與平面所成的角且等于45°.

  20.解析:(1)

  ∵ x≥1. ∴ 

  當x≥1時,是增函數(shù),其最小值為

  ∴ a<0(a=0時也符合題意). ∴ a≤0.

 。2),即27-6a-3=0, ∴ a=4.

  ∴ 有極大值點,極小值點

  此時fx)在,上時減函數(shù),在,+上是增函數(shù).

  ∴ fx)在,上的最小值是,最大值是,(因).

  21.解析:(1)∵ 斜率k存在,不妨設k>0,求出M,2).直線MA方程為,直線MB方程為

  分別與橢圓方程聯(lián)立,可解出,

  ∴ . ∴ (定值).

  (2)設直線AB方程為,與聯(lián)立,消去y

  由D>0得-4<m<4,且m≠0,點MAB的距離為

  設△AMB的面積為S. ∴ 

  當時,得

  22.解析:(1)∵ ,a,,

  ∴   ∴   ∴ 

  ∴ 

  ∴ a=2或a=3(a=3時不合題意,舍去). ∴a=2.

 。2),,由可得

  . ∴ 

  ∴ b=5

 。3)由(2)知,, ∴ 

  ∴ . ∴ ,

  ∵ 

  當n≥3時,

  

     

  

  

  ∴ . 綜上得 

 

 


同步練習冊答案