(1)求的最小正周期,(2)若.求的最大以及最小值 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)

(1)求的最小正周期;

(2)若,求的最大值、最小值及相應(yīng)的x的值。

【解析】本試題主要是考查了三角函數(shù)的化簡和變形,以及運(yùn)用三角函數(shù)的性質(zhì)求解最值問題的綜合運(yùn)用試題。

 

查看答案和解析>>

已知函數(shù)

(I)求函數(shù)以的最小正周期T;

()若△ABC的三邊a,b,c滿足,且邊b所對的角為B,試求cosB的取值范圍,并確定此時(shí)的最大值

查看答案和解析>>

已知函數(shù)數(shù)學(xué)公式
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若數(shù)學(xué)公式,求f(x)的最大值和最小值,以及對應(yīng)的x的值.

查看答案和解析>>

已知函數(shù)
(Ⅰ)求f(x)的最小正周期T;
(Ⅱ)若△ABC的三邊長a,b,c成等比數(shù)列,且c2+ac-a2=bc,求邊a所對角A以及f(A)的大小.

查看答案和解析>>

已知函數(shù)
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若,求f(x)的最大值和最小值,以及對應(yīng)的x的值.

查看答案和解析>>

一、選擇

1.A 2.B 3.B 4.D 5.(理)C。ㄎ模〢 6.B 7.A 8.B 9.A 

10.B 11.(理)A。ㄎ模〤 12.B 

二、填空

13.(理)。ㄎ模25,60,15 14.-672 15.2.5小時(shí) 16.(理)①,④(文)(1),;(1),;(4),

三、解答題

  17.解析:設(shè)fx)的二次項(xiàng)系數(shù)為m,其圖象上兩點(diǎn)為(1-x,)、B(1+x,)因?yàn)?sub>,,所以,由x的任意性得fx)的圖象關(guān)于直線x=1對稱,若m>0,則x≥1時(shí),fx)是增函數(shù),若m<0,則x≥1時(shí),fx)是減函數(shù).

  ∵ ,,,

,

  ∴ 當(dāng)時(shí),

,

  ∵ , ∴ 

  當(dāng)時(shí),同理可得

  綜上:的解集是當(dāng)時(shí),為;

  當(dāng)時(shí),為,或

  18.解析:(理)(1)設(shè)甲隊(duì)在第五場比賽后獲得冠軍為事件M,則第五場比賽甲隊(duì)獲勝,前四場比賽甲隊(duì)獲勝三場

  依題意得

 。2)設(shè)甲隊(duì)獲得冠軍為事件E,則E包含第四、第五、第六、第七場獲得冠軍四種情況,且它們被彼此互斥.

  ∴ 

(文)①設(shè)甲袋中恰有兩個白球?yàn)槭录嗀

 

②設(shè)甲袋內(nèi)恰好有4個白球?yàn)槭录?i>B,則B包含三種情況.

甲袋中取2個白球,且乙袋中取2個白球,②甲袋中取1個白球,1個黑球,且乙袋中取1個白球,1個黑球,③甲、乙兩袋中各取2個黑球.

∴ 

  19.解析:(1)取中點(diǎn)E,連結(jié)ME、,

  ∴ ,MCEC. ∴ MC. ∴ ,MC,N四點(diǎn)共面.

  (2)連結(jié)BD,則BD在平面ABCD內(nèi)的射影.

  ∵ , ∴ Rt△CDM~Rt△BCD,∠DCM=∠CBD

  ∴ ∠CBD+∠BCM=90°.  ∴ MCBD.  ∴ 

 。3)連結(jié),由是正方形,知

  ∵ MC, ∴ ⊥平面

  ∴ 平面⊥平面

  (4)∠與平面所成的角且等于45°.

  20.解析:(1)

  ∵ x≥1. ∴ ,

  當(dāng)x≥1時(shí),是增函數(shù),其最小值為

  ∴ a<0(a=0時(shí)也符合題意). ∴ a≤0.

 。2),即27-6a-3=0, ∴ a=4.

  ∴ 有極大值點(diǎn),極小值點(diǎn)

  此時(shí)fx)在,上時(shí)減函數(shù),在,+上是增函數(shù).

  ∴ fx)在,上的最小值是,最大值是,(因).

  21.解析:(1)∵ 斜率k存在,不妨設(shè)k>0,求出M,2).直線MA方程為,直線MB方程為

  分別與橢圓方程聯(lián)立,可解出

  ∴ . ∴ (定值).

 。2)設(shè)直線AB方程為,與聯(lián)立,消去y

  由D>0得-4<m<4,且m≠0,點(diǎn)MAB的距離為

  設(shè)△AMB的面積為S. ∴ 

  當(dāng)時(shí),得

  22.解析:(1)∵ ,a,,

  ∴   ∴   ∴ 

  ∴ 

  ∴ a=2或a=3(a=3時(shí)不合題意,舍去). ∴a=2.

 。2),由可得

  . ∴ 

  ∴ b=5

  (3)由(2)知,, ∴ 

  ∴ . ∴ ,

  ∵ 

  當(dāng)n≥3時(shí),

  

     

  

  

  ∴ . 綜上得 

 

 


同步練習(xí)冊答案