問中.記是所有中滿足. 的項(xiàng)從小到大依次組成的數(shù)列.又記為的前n項(xiàng)和.的前n項(xiàng)和.求證:≥. 查看更多

 

題目列表(包括答案和解析)

已知等比數(shù)列{an}中,a1=2,a4=16.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)等差數(shù)列{bn}中,b2=a2,b9=a5,求數(shù)列{bn}的通項(xiàng)公式;
(3)在(2)問的條件下求數(shù)列{anbn}的前n項(xiàng)和Sn

查看答案和解析>>

如圖:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,PD與平面ABCD所成角是30°,點(diǎn)F是PB的中點(diǎn),E為邊BC上的動(dòng)點(diǎn).
(1)證明:無論點(diǎn)E在邊BC的何處,都有PE⊥AF
(2)當(dāng)BE等于何值時(shí),二面角P-DE-A的大小為45°
(3)在(2)問的條件下,求P點(diǎn)到角AEF的距離.

查看答案和解析>>

(2010•江西模擬)設(shè)數(shù)列{an}為等差數(shù)列,an<an+1且前6項(xiàng)的平方和為70,立方和為0.
(1)求{an}的通項(xiàng)公式;
(2)在平面直角坐標(biāo)系內(nèi),直線ln的斜率為an,且與曲線y=x2相切,與y軸交于Bn,記bn=|Bn+1Bn|,求bn;
(3)對(duì)于(2)問中數(shù)列{bn}求證:|sinb1+sinb2+…+sinbn|<
3
2

查看答案和解析>>

(2012•棗莊二模)已知橢圓C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
的左頂點(diǎn)為A,右焦點(diǎn)為F,且過點(diǎn)(1,
3
2
),橢圓C的焦點(diǎn)與曲線2
x
2
 
-2
y
2
 
=1
的焦點(diǎn)重合.
(1)求橢圓C的方程;
(2)過點(diǎn)F任作橢圓C的一條弦PQ,直線AP、AQ分別交直線x=4于M、N兩點(diǎn),點(diǎn)M、N的縱坐標(biāo)分別為m、n.請(qǐng)問以線段MN為直徑的圓是否經(jīng)過x軸上的定點(diǎn)?若存在,求出定點(diǎn)的坐標(biāo),并證明你的結(jié)論;若不存在,請(qǐng)說明理由.
(3)在(2)問的條件下,求以線段MN為直徑的圓的面積的最小值.

查看答案和解析>>

已知橢圓的左頂點(diǎn)為A,右焦點(diǎn)為F,且過點(diǎn)(1,),橢圓C的焦點(diǎn)與曲線的焦點(diǎn)重合.
(1)求橢圓C的方程;
(2)過點(diǎn)F任作橢圓C的一條弦PQ,直線AP、AQ分別交直線x=4于M、N兩點(diǎn),點(diǎn)M、N的縱坐標(biāo)分別為m、n.請(qǐng)問以線段MN為直徑的圓是否經(jīng)過x軸上的定點(diǎn)?若存在,求出定點(diǎn)的坐標(biāo),并證明你的結(jié)論;若不存在,請(qǐng)說明理由.
(3)在(2)問的條件下,求以線段MN為直徑的圓的面積的最小值.

查看答案和解析>>

一、選擇

1.A 2.B 3.B 4.D 5.(理)C。ㄎ模〢 6.B 7.A 8.B 9.A 

10.B 11.(理)A。ㄎ模〤 12.B 

二、填空

13.(理) (文)25,60,15 14.-672 15.2.5小時(shí) 16.(理)①,④(文)(1),;(1),;(4),

三、解答題

  17.解析:設(shè)fx)的二次項(xiàng)系數(shù)為m,其圖象上兩點(diǎn)為(1-x,)、B(1+x,)因?yàn)?sub>,,所以,由x的任意性得fx)的圖象關(guān)于直線x=1對(duì)稱,若m>0,則x≥1時(shí),fx)是增函數(shù),若m<0,則x≥1時(shí),fx)是減函數(shù).

  ∵ ,,,,

,

  ∴ 當(dāng)時(shí),

,

  ∵ , ∴ 

  當(dāng)時(shí),同理可得

  綜上:的解集是當(dāng)時(shí),為;

  當(dāng)時(shí),為,或

  18.解析:(理)(1)設(shè)甲隊(duì)在第五場(chǎng)比賽后獲得冠軍為事件M,則第五場(chǎng)比賽甲隊(duì)獲勝,前四場(chǎng)比賽甲隊(duì)獲勝三場(chǎng)

  依題意得

 。2)設(shè)甲隊(duì)獲得冠軍為事件E,則E包含第四、第五、第六、第七場(chǎng)獲得冠軍四種情況,且它們被彼此互斥.

  ∴ 

(文)①設(shè)甲袋中恰有兩個(gè)白球?yàn)槭录嗀

 

②設(shè)甲袋內(nèi)恰好有4個(gè)白球?yàn)槭录?i>B,則B包含三種情況.

甲袋中取2個(gè)白球,且乙袋中取2個(gè)白球,②甲袋中取1個(gè)白球,1個(gè)黑球,且乙袋中取1個(gè)白球,1個(gè)黑球,③甲、乙兩袋中各取2個(gè)黑球.

∴ 

  19.解析:(1)取中點(diǎn)E,連結(jié)ME、,

  ∴ ,MCEC. ∴ MC. ∴ ,M,C,N四點(diǎn)共面.

 。2)連結(jié)BD,則BD在平面ABCD內(nèi)的射影.

  ∵ , ∴ Rt△CDM~Rt△BCD,∠DCM=∠CBD

  ∴ ∠CBD+∠BCM=90°.  ∴ MCBD.  ∴ 

 。3)連結(jié),由是正方形,知

  ∵ MC, ∴ ⊥平面

  ∴ 平面⊥平面

 。4)∠與平面所成的角且等于45°.

  20.解析:(1)

  ∵ x≥1. ∴ ,

  當(dāng)x≥1時(shí),是增函數(shù),其最小值為

  ∴ a<0(a=0時(shí)也符合題意). ∴ a≤0.

 。2),即27-6a-3=0, ∴ a=4.

  ∴ 有極大值點(diǎn),極小值點(diǎn)

  此時(shí)fx)在,上時(shí)減函數(shù),在,+上是增函數(shù).

  ∴ fx)在,上的最小值是,最大值是,(因).

  21.解析:(1)∵ 斜率k存在,不妨設(shè)k>0,求出M,2).直線MA方程為,直線MB方程為

  分別與橢圓方程聯(lián)立,可解出

  ∴ . ∴ (定值).

 。2)設(shè)直線AB方程為,與聯(lián)立,消去y

  由D>0得-4<m<4,且m≠0,點(diǎn)MAB的距離為

  設(shè)△AMB的面積為S. ∴ 

  當(dāng)時(shí),得

  22.解析:(1)∵ ,a,

  ∴   ∴   ∴ 

  ∴ 

  ∴ a=2或a=3(a=3時(shí)不合題意,舍去). ∴a=2.

 。2),,由可得

  . ∴ 

  ∴ b=5

 。3)由(2)知,, ∴ 

  ∴ . ∴ 

  ∵ ,

  當(dāng)n≥3時(shí),

  

     

  

  

  ∴ . 綜上得 

 

 


同步練習(xí)冊(cè)答案