題目列表(包括答案和解析)
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線(xiàn),
(1)求圓O和直線(xiàn)的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線(xiàn)與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù)和,不等式恒成立,試求實(shí)數(shù)的取值范圍.
C
[解析] 由基本不等式,得ab≤==-ab,所以ab≤,故B錯(cuò);+==≥4,故A錯(cuò);由基本不等式得≤=,即+≤,故C正確;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D錯(cuò).故選C.
.定義域?yàn)?/span>R的函數(shù)滿(mǎn)足,且當(dāng)時(shí),,則當(dāng)時(shí),的最小值為( )
(A) (B) (C) (D)
.過(guò)點(diǎn)作圓的弦,其中弦長(zhǎng)為整數(shù)的共有 ( 。
A.16條 B. 17條 C. 32條 D. 34條
一、
二、
9.16 10.2009 11. 12.
13. 14.3 15.②③
三、
16.解:(1)由余弦定理得:
是以角C為直角的直角三角形.……………………6分
(2)中
………………①
………………②
②÷①得,
則……………………12分
17.解:(1)因?yàn)?sub>……………………………………(2分)
……………………………………………………(4分)
所以線(xiàn)路信息通暢的概率為!6分)
(2)的所有可能取值為4,5,6,7,8。
……………………………………………………………(9分)
∴的分布列為
4
5
6
7
8
P
…………………………………………………………………………………………(10分)
∴E=4×+5×+6×+7×+8×=6。……………………(12分)
18.解:解法一:(1)證明:連結(jié)OC,
∵ABD為等邊三角形,O為BD的中點(diǎn),∴AO
垂直BD!1分)
∴ AO=CO=。………………………………………………………………………(2分)
在AOC中,AC=,∴AO2+CO2=AC2,
∴∠AOC=900,即AO⊥OC。
∴BDOC=O,∴AO⊥平面BCD!3分)
(2)過(guò)O作OE垂直BC于E,連結(jié)AE,
∵AO⊥平面BCD,∴AE在平面BCD上的射影為OE。
∴AE⊥BC。
∠AEO為二面角A―BC―D的平面角。………………………………………(7分)
在RtAEO中,AO=,OE=,
∠,
∴∠AEO=arctan2。
二面角A―BC―D的大小為arctan2。
(3)設(shè)點(diǎn)O到面ACD的距離為∵VO-ACD=VA-OCD,
∴。
在ACD中,AD=CD=2,AC=,
。
|