分析:⑴求出復(fù)數(shù)的實(shí)虛部.利用復(fù)數(shù)的虛部為零.實(shí)部大于零求解即可,⑵將和都寫成的形式.利用復(fù)數(shù)相等列方程組求解. 查看更多

 

題目列表(包括答案和解析)

當(dāng)實(shí)數(shù)取何值時(shí),復(fù)數(shù)(其中是虛數(shù)單位).

(1)是實(shí)數(shù);(2)是純虛數(shù);(3)等于零.

【解析】(1)根據(jù)實(shí)數(shù)的等價(jià)條件:復(fù)數(shù)的虛部為零,列出方程求出m的值;

(2)根據(jù)純虛數(shù)的等價(jià)條件:復(fù)數(shù)的虛部不為零、實(shí)部為零,列出方程求出m的值;

(3)根據(jù)實(shí)部和虛部都為零,列出方程求出m的值.

 

查看答案和解析>>

已知關(guān)于x的方程(1-a)x2+(a+2)x-4=0,a∈R,求:?

(1)方程有兩個(gè)正根的充要條件;

(2)方程至少有一個(gè)正根的充要條件.?

思路分析:先求出方程有兩個(gè)實(shí)根的充要條件,再討論x2的系數(shù)及運(yùn)用根與系數(shù)的關(guān)系分別求出要求的充要條件.

查看答案和解析>>

已知橢圓
x2
4
+
y2
3
=1.
(1)是否有這樣的實(shí)數(shù)值m,使得此橢圓上存在兩點(diǎn)關(guān)于直線y=2x+m對(duì)稱?如果存在,求出m的值或取值范圍;如果沒有,試說明理由.
(2)若直線為y=kx+m,能使得此橢圓上存在兩點(diǎn)關(guān)于直線y=kx+m對(duì)稱的m的值的集合為M,要使M⊆(-
1
3
,
1
3
),求k的取值范圍.

查看答案和解析>>

已知函數(shù)y=f(x),x∈R滿足f(x+1)=af(x),a是不為0的實(shí)常數(shù).
(1)若當(dāng)0≤x≤1時(shí),f(x)=x(1-x),求函數(shù)y=f(x),x∈[0,1]的值域;
(2)在(1)的條件下,求函數(shù)y=f(x),x∈[n,n+1),n∈N的解析式;
(3)若當(dāng)0<x≤1時(shí),f(x)=3x,試研究函數(shù)y=f(x)在區(qū)間(0,+∞)上是否可能是單調(diào)函數(shù)?
若可能,求出a的取值范圍;若不可能,請(qǐng)說明理由.

查看答案和解析>>

已知函數(shù)f(x)=2lnx,g(x)=
1
2
ax2+3x.
(1)設(shè)直線x=1與曲線y=f(x)和y=g(x)分別相交于點(diǎn)P、Q,且曲線y=f(x)和y=g(x)在點(diǎn)P、Q處的切線平行,若方程
1
2
f(x2+1)+g(x)=3x+k有四個(gè)不同的實(shí)根,求實(shí)數(shù)k的取值范圍;
(2)設(shè)函數(shù)F(x)滿足F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導(dǎo)函數(shù);試問是否存在實(shí)數(shù)a,使得當(dāng)x∈(0,1]時(shí),F(xiàn)(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

一、選擇題:

1.C.提示:

2.A.提示:直接利用“更相減損術(shù)”原理逐步運(yùn)算即可.

3.B.提示:為實(shí)數(shù),所以

4.C.提示:這是一個(gè)條件分支結(jié)構(gòu),實(shí)質(zhì)是分段函數(shù)求最值問題,將函數(shù)定義域分為三段討論即可求解.分段函數(shù)為:,

當(dāng)時(shí),解得,不合題意;當(dāng)時(shí),解得,不合題意;

當(dāng)時(shí),解得,符合題意,所以當(dāng)輸入的值為3時(shí),輸出的值為8.

5.B.提示:由為純虛數(shù)得:.由,解得:.因?yàn)?sub>為第四象限角,所以,則,選B.

6.C.提示:此算法的功能為求解當(dāng)取到第一個(gè)大于或等于的值時(shí),的表達(dá)式中最后一項(xiàng)的值.

.所以時(shí),

此時(shí)

7.C.提示:令,則,∴

8.D.提示:框圖的功能是尋找滿足的最小的自然數(shù),可解得,,

所以,則輸出的值為

9.D.提示:,此復(fù)數(shù)的對(duì)應(yīng)點(diǎn)為,因?yàn)?sub>,所以,所以此復(fù)數(shù)的對(duì)應(yīng)點(diǎn)在第四象限.

10.B.提示:設(shè)工序c所需工時(shí)數(shù)為x天,由題設(shè)關(guān)鍵路線是aceg.需工時(shí)1+x+4+1=10.∴x=4,即工序c所需工時(shí)數(shù)為4天.

11.A.提示:,,……,所以

12.A.提示:根據(jù)題意可得:,解得.所以點(diǎn)落在以為端點(diǎn)的線段上,如右圖.表示線段上的點(diǎn)到的距離之和,顯然當(dāng)共線時(shí),和最小,此時(shí),點(diǎn)是直線的交點(diǎn),由圖知,交點(diǎn)為,所以

,當(dāng)時(shí),,

二、填空題

13.,.提示:這是一個(gè)當(dāng)型循環(huán)結(jié)構(gòu),由條件可知判斷的條件是:;處理框所填的是:

14.21分鐘.提示:根據(jù)流程,可以先燒水,泡面,在燒水泡面的11分鐘里,可以同時(shí)洗臉?biāo)⒀篮蜕暇W(wǎng)查資料,這樣最短可用去11分鐘,然后吃飯用10分鐘,這樣他做完這些事情用的最短時(shí)間為21分鐘.

15..提示:設(shè)方程的實(shí)根為,代入方程得,可化為,所以有,解得,

所以,所以其共軛復(fù)數(shù)為

16.4.提示:從圖中可以看出,一件成品必須經(jīng)過的工序次數(shù)是粗加工、檢驗(yàn)、精加工或返修加工、檢驗(yàn),至少四次.

三、解答題:

17.解:由題知平行四邊形三頂點(diǎn)坐標(biāo)為,

設(shè)D點(diǎn)的坐標(biāo)為

因?yàn)?sub>,得,

,即,

所以,則對(duì)應(yīng)的復(fù)數(shù)為

⑵因?yàn)?sub>,所以復(fù)數(shù)的對(duì)應(yīng)點(diǎn)Z在以為圓心,以2為半徑的圓上,

的最大值為

18.解:

19.解:因?yàn)?sub>,,

所以,若,則,

消去可得:,

可化為,則當(dāng)時(shí),取最小值;當(dāng)時(shí),取最大值7.

所以

20.解:此程序的功能是求解函數(shù)的函數(shù)值.

根據(jù)題意知

則當(dāng)時(shí),;當(dāng)時(shí),;

所以,可以化為,

當(dāng)時(shí),時(shí),有最小值;當(dāng)時(shí),則時(shí),有最小值

因?yàn)?sub>,所以所得值中的最小值為1.

21.解:,

所以.因?yàn)?sub>,所以,

所以,則,即的模的取值范圍為

22.解:(1)算法的功能為:

(2)程序框圖為:

⑶程序語句為:

;

    ;

        ;

    ;

   

w.w.w.k.s.5.u.c.o.m

 


同步練習(xí)冊(cè)答案