A.2 B.-2 C. D.-2i分析:本題就是很簡單的復數(shù)運算問題.直接按運算法則求解即可. 查看更多

 

題目列表(包括答案和解析)

已知為虛數(shù)單位,且,則x的值為(    )

A.4        B.4+4         C.      D.2

 

查看答案和解析>>

曲線C:y=1+與直線l:y=k(x-2)+4有兩個交點時,實數(shù)k的取值范圍是(    )

A.(,]                              B.(,+∞)

C.(0,)                                   D.(,)

查看答案和解析>>

已知奇函數(shù)f (x)滿足f(x+3)=f (x), 當x∈[1,2]時,f (x)=-1則的值為

     A.3            B.-3           C.             D.

      

查看答案和解析>>

.如果直線 a x + 2y+2=0 與直線3x – y–2=0平行, 那么a等于    (    )

  A. -3    B. -6        C。         D.

 

查看答案和解析>>

在直角三角形ABC中,AB=4,AC=2,M是斜邊BC的中點,則向量在向量方向上的投影是            

    A.1                B.-1              C.            D.-

 

查看答案和解析>>

一、選擇題:

1.C.提示:

2.A.提示:直接利用“更相減損術”原理逐步運算即可.

3.B.提示:為實數(shù),所以

4.C.提示:這是一個條件分支結構,實質(zhì)是分段函數(shù)求最值問題,將函數(shù)定義域分為三段討論即可求解.分段函數(shù)為:,

時,解得,不合題意;當時,解得,不合題意;

時,解得,符合題意,所以當輸入的值為3時,輸出的值為8.

5.B.提示:由為純虛數(shù)得:.由,解得:.因為為第四象限角,所以,則,選B.

6.C.提示:此算法的功能為求解取到第一個大于或等于的值時,的表達式中最后一項的值.

.所以時,

此時

7.C.提示:令,則,∴

8.D.提示:框圖的功能是尋找滿足的最小的自然數(shù),可解得,,

所以,則輸出的值為

9.D.提示:,此復數(shù)的對應點為,因為,所以,所以此復數(shù)的對應點在第四象限.

10.B.提示:設工序c所需工時數(shù)為x天,由題設關鍵路線是aceg.需工時1+x+4+1=10.∴x=4,即工序c所需工時數(shù)為4天.

11.A.提示:,……,所以

12.A.提示:根據(jù)題意可得:,解得.所以點落在以為端點的線段上,如右圖.表示線段上的點到的距離之和,顯然當共線時,和最小,此時,點是直線的交點,由圖知,交點為,所以

,當時,

二、填空題

13.,.提示:這是一個當型循環(huán)結構,由條件可知判斷的條件是:;處理框所填的是:

14.21分鐘.提示:根據(jù)流程,可以先燒水,泡面,在燒水泡面的11分鐘里,可以同時洗臉刷牙和上網(wǎng)查資料,這樣最短可用去11分鐘,然后吃飯用10分鐘,這樣他做完這些事情用的最短時間為21分鐘.

15..提示:設方程的實根為,代入方程得,可化為,所以有,解得,

所以,所以其共軛復數(shù)為

16.4.提示:從圖中可以看出,一件成品必須經(jīng)過的工序次數(shù)是粗加工、檢驗、精加工或返修加工、檢驗,至少四次.

三、解答題:

17.解:由題知平行四邊形三頂點坐標為,

設D點的坐標為

因為,得,

,即

所以,則對應的復數(shù)為

⑵因為,所以復數(shù)的對應點Z在以為圓心,以2為半徑的圓上,

的最大值為

18.解:

19.解:因為,,

所以,若,則,

消去可得:

可化為,則當時,取最小值;當時,取最大值7.

所以

20.解:此程序的功能是求解函數(shù)的函數(shù)值.

根據(jù)題意知

則當時,;當時,;

所以,可以化為,

時,時,有最小值;當時,則時,有最小值

因為,所以所得值中的最小值為1.

21.解:,

所以.因為,所以,

所以,則,即的模的取值范圍為

22.解:(1)算法的功能為:

(2)程序框圖為:

⑶程序語句為:

;

    ;

        ;

    ;

   

w.w.w.k.s.5.u.c.o.m

 


同步練習冊答案