解:將代入得.選A.感悟:簡單的復數(shù)運算仍然是高考對復數(shù)考查的重點之一.但要求不高.屬于必須得分的題目.只要注意熟練掌握復數(shù)的加減.乘除及乘方運算.注意運算的正確性.七.實戰(zhàn)演練 查看更多

 

題目列表(包括答案和解析)

在△中,∠,∠,∠的對邊分別是,且 .

(1)求∠的大;(2)若,,求的值.

【解析】第一問利用余弦定理得到

第二問

(2)  由條件可得 

將    代入  得  bc=2

解得   b=1,c=2  或  b=2,c=1  .

 

查看答案和解析>>

已知向量),向量,

.

(Ⅰ)求向量; (Ⅱ)若,求.

【解析】本試題主要考查了向量的數(shù)量積的運算,以及兩角和差的三角函數(shù)關(guān)系式的運用。

(1)問中∵,∴,…………………1分

,得到三角關(guān)系是,結(jié)合,解得。

(2)由,解得,,結(jié)合二倍角公式,和,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②聯(lián)立方程解得,,5分

     ……………6分

(Ⅱ)∵,  …………7分

               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

將①代入②中,可得   ③    …………………4分

將③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,從而.      …………………8分

由(Ⅰ)知;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

綜上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知 .                …………9分

             ……………10分

,且注意到

,又,∴   ………………………11分

綜上可得                    …………………12分

(若用,又∵ ∴

 

查看答案和解析>>

從方程數(shù)學公式中消去t,此過程如下:
由x=2t得數(shù)學公式,將數(shù)學公式代入y=t-3中,得到數(shù)學公式
仿照上述方法,將方程數(shù)學公式中的α消去,并說明它表示什么圖形,求出其焦點.

查看答案和解析>>

如圖,已知直線)與拋物線和圓都相切,的焦點.

(Ⅰ)求的值;

(Ⅱ)設上的一動點,以為切點作拋物線的切線,直線軸于點,以、為鄰邊作平行四邊形,證明:點在一條定直線上;

(Ⅲ)在(Ⅱ)的條件下,記點所在的定直線為,    直線軸交點為,連接交拋物線、兩點,求△的面積的取值范圍.

【解析】第一問中利用圓的圓心為,半徑.由題設圓心到直線的距離.  

,解得舍去)

與拋物線的相切點為,又,得.     

代入直線方程得:,∴    所以,

第二問中,由(Ⅰ)知拋物線方程為,焦點.   ………………(2分)

,由(Ⅰ)知以為切點的切線的方程為.   

,得切線軸的點坐標為    所以,,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形

因為是定點,所以點在定直線

第三問中,設直線,代入結(jié)合韋達定理得到。

解:(Ⅰ)由已知,圓的圓心為,半徑.由題設圓心到直線的距離.  

,解得舍去).     …………………(2分)

與拋物線的相切點為,又,得,.     

代入直線方程得:,∴    所以,.      ……(2分)

(Ⅱ)由(Ⅰ)知拋物線方程為,焦點.   ………………(2分)

,由(Ⅰ)知以為切點的切線的方程為.   

,得切線軸的點坐標為    所以,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,

因為是定點,所以點在定直線上.…(2分)

(Ⅲ)設直線,代入,  ……)得,                 ……………………………     (2分)

,

的面積范圍是

 

查看答案和解析>>

從方程中消去t,此過程如下:
由x=2t得,將代入y=t-3中,得到
仿照上述方法,將方程中的α消去,并說明它表示什么圖形,求出其焦點.

查看答案和解析>>

一、選擇題:

1.C.提示:

2.A.提示:直接利用“更相減損術(shù)”原理逐步運算即可.

3.B.提示:為實數(shù),所以

4.C.提示:這是一個條件分支結(jié)構(gòu),實質(zhì)是分段函數(shù)求最值問題,將函數(shù)定義域分為三段討論即可求解.分段函數(shù)為:,

時,解得,不合題意;當時,解得,不合題意;

時,解得,符合題意,所以當輸入的值為3時,輸出的值為8.

5.B.提示:由為純虛數(shù)得:.由,解得:.因為為第四象限角,所以,則,選B.

6.C.提示:此算法的功能為求解取到第一個大于或等于的值時,的表達式中最后一項的值.

.所以時,

此時

7.C.提示:令,則,∴

8.D.提示:框圖的功能是尋找滿足的最小的自然數(shù),可解得,

所以,則輸出的值為

9.D.提示:,此復數(shù)的對應點為,因為,所以,所以此復數(shù)的對應點在第四象限.

10.B.提示:設工序c所需工時數(shù)為x天,由題設關(guān)鍵路線是aceg.需工時1+x+4+1=10.∴x=4,即工序c所需工時數(shù)為4天.

11.A.提示:,,……,所以

12.A.提示:根據(jù)題意可得:,解得.所以點落在以為端點的線段上,如右圖.表示線段上的點到的距離之和,顯然當共線時,和最小,此時,點是直線的交點,由圖知,交點為,所以

,當時,

二、填空題

13..提示:這是一個當型循環(huán)結(jié)構(gòu),由條件可知判斷的條件是:;處理框所填的是:

14.21分鐘.提示:根據(jù)流程,可以先燒水,泡面,在燒水泡面的11分鐘里,可以同時洗臉刷牙和上網(wǎng)查資料,這樣最短可用去11分鐘,然后吃飯用10分鐘,這樣他做完這些事情用的最短時間為21分鐘.

15..提示:設方程的實根為,代入方程得,可化為,所以有,解得,

所以,所以其共軛復數(shù)為

16.4.提示:從圖中可以看出,一件成品必須經(jīng)過的工序次數(shù)是粗加工、檢驗、精加工或返修加工、檢驗,至少四次.

三、解答題:

17.解:由題知平行四邊形三頂點坐標為

設D點的坐標為

因為,得,

,即,

所以,則對應的復數(shù)為

⑵因為,所以復數(shù)的對應點Z在以為圓心,以2為半徑的圓上,

的最大值為

18.解:

19.解:因為,

所以,若,則,

消去可得:,

可化為,則當時,取最小值;當時,取最大值7.

所以

20.解:此程序的功能是求解函數(shù)的函數(shù)值.

根據(jù)題意知

則當時,;當時,;

所以,可以化為,

時,時,有最小值;當時,則時,有最小值

因為,所以所得值中的最小值為1.

21.解:

所以.因為,所以,

所以,則,即的模的取值范圍為

22.解:(1)算法的功能為:

(2)程序框圖為:

⑶程序語句為:

;

    ;

       

    ;

   

w.w.w.k.s.5.u.c.o.m

 


同步練習冊答案