14.中學(xué)生小剛早上起床后要做以下事情:洗臉?biāo)⒀?泡面.上網(wǎng)查今天語文課要用到的一個(gè)資料.則他做完這些事情用的最短時(shí)間為 . 查看更多

 

題目列表(包括答案和解析)

小明每天早晨起床后要做如下事情:洗刷用5分鐘;收拾床褥用4分鐘;聽聽廣播15分鐘;吃早飯8分鐘.要完成這些事情,小明要花費(fèi)的最少時(shí)間為(    )

A.17分鐘            B.19分鐘            C.23分鐘             D.27分鐘

查看答案和解析>>

小明每天早晨起床后要做如下事情:洗漱用5分鐘,收拾床褥用4分鐘,聽聽廣播用15分鐘,吃早飯用8分鐘,要完成這些事情,小明要花費(fèi)的最少時(shí)間為

A.17分鐘              B.19分鐘               C.23分鐘              D.27分鐘

查看答案和解析>>

小剛是個(gè)粗心的學(xué)生,有一次他做了5道數(shù)學(xué)題:①(-3)0=1;②a3+a3=6;③4m-2=
1
4m2
;④(xy25=x5y10;⑤
(-2)2
=2,請(qǐng)你幫小剛檢查一下,他做對(duì)的題目是(  )

查看答案和解析>>

李強(qiáng)用流程圖把早上上班前需要做的事情做了如下幾種方案,則所用時(shí)間最少的方案是
 

精英家教網(wǎng)

查看答案和解析>>

小剛離開家去學(xué)校,由于怕遲到,所以一開始就跑步,跑累了再走余下的路程.在下圖所示圖形中,縱軸表示離校的距離,橫軸表示出發(fā)后的時(shí)間,則下列四個(gè)圖象中較符合小剛走法的是(    )

查看答案和解析>>

一、選擇題:

1.C.提示:

2.A.提示:直接利用“更相減損術(shù)”原理逐步運(yùn)算即可.

3.B.提示:為實(shí)數(shù),所以

4.C.提示:這是一個(gè)條件分支結(jié)構(gòu),實(shí)質(zhì)是分段函數(shù)求最值問題,將函數(shù)定義域分為三段討論即可求解.分段函數(shù)為:,

當(dāng)時(shí),解得,不合題意;當(dāng)時(shí),解得,不合題意;

當(dāng)時(shí),解得,符合題意,所以當(dāng)輸入的值為3時(shí),輸出的值為8.

5.B.提示:由為純虛數(shù)得:.由,解得:.因?yàn)?sub>為第四象限角,所以,則,選B.

6.C.提示:此算法的功能為求解當(dāng)取到第一個(gè)大于或等于的值時(shí),的表達(dá)式中最后一項(xiàng)的值.

.所以時(shí),

此時(shí)

7.C.提示:令,則,∴

8.D.提示:框圖的功能是尋找滿足的最小的自然數(shù),可解得,

所以,則輸出的值為

9.D.提示:,此復(fù)數(shù)的對(duì)應(yīng)點(diǎn)為,因?yàn)?sub>,所以,所以此復(fù)數(shù)的對(duì)應(yīng)點(diǎn)在第四象限.

10.B.提示:設(shè)工序c所需工時(shí)數(shù)為x天,由題設(shè)關(guān)鍵路線是aceg.需工時(shí)1+x+4+1=10.∴x=4,即工序c所需工時(shí)數(shù)為4天.

11.A.提示:,……,所以

12.A.提示:根據(jù)題意可得:,解得.所以點(diǎn)落在以為端點(diǎn)的線段上,如右圖.表示線段上的點(diǎn)到的距離之和,顯然當(dāng)共線時(shí),和最小,此時(shí),點(diǎn)是直線的交點(diǎn),由圖知,交點(diǎn)為,所以

,當(dāng)時(shí),,

二、填空題

13..提示:這是一個(gè)當(dāng)型循環(huán)結(jié)構(gòu),由條件可知判斷的條件是:;處理框所填的是:

14.21分鐘.提示:根據(jù)流程,可以先燒水,泡面,在燒水泡面的11分鐘里,可以同時(shí)洗臉?biāo)⒀篮蜕暇W(wǎng)查資料,這樣最短可用去11分鐘,然后吃飯用10分鐘,這樣他做完這些事情用的最短時(shí)間為21分鐘.

15..提示:設(shè)方程的實(shí)根為,代入方程得,可化為,所以有,解得,

所以,所以其共軛復(fù)數(shù)為

16.4.提示:從圖中可以看出,一件成品必須經(jīng)過的工序次數(shù)是粗加工、檢驗(yàn)、精加工或返修加工、檢驗(yàn),至少四次.

三、解答題:

17.解:由題知平行四邊形三頂點(diǎn)坐標(biāo)為,

設(shè)D點(diǎn)的坐標(biāo)為

因?yàn)?sub>,得,

,即,

所以,則對(duì)應(yīng)的復(fù)數(shù)為

⑵因?yàn)?sub>,所以復(fù)數(shù)的對(duì)應(yīng)點(diǎn)Z在以為圓心,以2為半徑的圓上,

的最大值為

18.解:

19.解:因?yàn)?sub>,,

所以,若,則,

消去可得:,

可化為,則當(dāng)時(shí),取最小值;當(dāng)時(shí),取最大值7.

所以

20.解:此程序的功能是求解函數(shù)的函數(shù)值.

根據(jù)題意知

則當(dāng)時(shí),;當(dāng)時(shí),;

所以,可以化為,

當(dāng)時(shí),時(shí),有最小值;當(dāng)時(shí),則時(shí),有最小值

因?yàn)?sub>,所以所得值中的最小值為1.

21.解:

所以.因?yàn)?sub>,所以

所以,則,即的模的取值范圍為

22.解:(1)算法的功能為:

(2)程序框圖為:

⑶程序語句為:

;

    ;

        ;

   

   

w.w.w.k.s.5.u.c.o.m

 


同步練習(xí)冊(cè)答案