矩陣的逆矩陣是 . 查看更多

 

題目列表(包括答案和解析)

(選做題)本題包括A、B、C、D四小題,請(qǐng)選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,若多做,則按作答的前兩題評(píng)分,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
A.[選修4-1:幾何證明選講]
已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(diǎn)(不與點(diǎn)A,C重合),延長(zhǎng)BD至點(diǎn)E.
求證:AD的延長(zhǎng)線平分∠CDE
B.[選修4-2:矩陣與變換]
已知矩陣A=
12
-14

(1)求A的逆矩陣A-1;
(2)求A的特征值和特征向量.
C.[選修4-4:坐標(biāo)系與參數(shù)方程]
已知曲線C的極坐標(biāo)方程為ρ=4sinθ,以極點(diǎn)為原點(diǎn),極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=
1
2
t
y=
3
2
t+1
(t為參數(shù)),求直線l被曲線C截得的線段長(zhǎng)度.
D.[選修4-5,不等式選講](本小題滿分10分)
設(shè)a,b,c均為正實(shí)數(shù),求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

[選做題]在A、B、C、D四小題中只能選做2題,每小題10分,計(jì)20分.請(qǐng)把答案寫在答題紙的指定區(qū)域內(nèi).
A.(選修4-1:幾何證明選講)
如圖,圓O的直徑AB=8,C為圓周上一點(diǎn),BC=4,過C作圓的切線l,過A作直線l的垂線AD,D為垂足,AD與圓O交于點(diǎn)E,求線段AE的長(zhǎng).
B.(選修4-2:矩陣與變換)
已知二階矩陣A有特征值λ1=3及其對(duì)應(yīng)的一個(gè)特征向量α1=
1
1
,特征值λ2=-1及其對(duì)應(yīng)的一個(gè)特征向量α2=
1
-1
,求矩陣A的逆矩陣A-1
C.(選修4-4:坐標(biāo)系與參數(shù)方程)
以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系(兩種坐標(biāo)系中取相同的單位長(zhǎng)度),已知點(diǎn)A的直角坐標(biāo)為(-2,6),點(diǎn)B的極坐標(biāo)為(4,
π
2
)
,直線l過點(diǎn)A且傾斜角為
π
4
,圓C以點(diǎn)B為圓心,4為半徑,試求直線l的參數(shù)方程和圓C的極坐標(biāo)方程.
D.(選修4-5:不等式選講)
設(shè)a,b,c,d都是正數(shù),且x=
a2+b2
y=
c2+d2
.求證:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

[選做題]在A、B、C、D四小題中只能選做兩題,每小題10分,共計(jì)20分。請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。

A.選修4 - 1:幾何證明選講

如圖,在四邊形ABCD中,△ABC≌△BAD。

求證:ABCD。

B.選修4 - 2:矩陣與變換

求矩陣的逆矩陣。

C.選修4 - 4:坐標(biāo)系與參數(shù)方程

已知曲線C的參數(shù)方程為為參數(shù),),求曲線C的普通方程。

D.選修4 - 5:不等式選講

設(shè)>0,求證:。

查看答案和解析>>

[選做題]在A、B、C、D四小題中只能選做兩題,每小題10分,共計(jì)20分。請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。
A.選修4 - 1:幾何證明選講
如圖,在四邊形ABCD中,△ABC≌△BAD

求證:ABCD。
B.選修4 - 2:矩陣與變換
求矩陣的逆矩陣。
C.選修4 - 4:坐標(biāo)系與參數(shù)方程
已知曲線C的參數(shù)方程為為參數(shù),),求曲線C的普通方程。
D.選修4 - 5:不等式選講
設(shè)>0,求證:。

查看答案和解析>>

[選做題]在A、B、C、D四小題中只能選做兩題,每小題10分,共計(jì)20分。請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。
A.選修4 - 1:幾何證明選講
如圖,在四邊形ABCD中,△ABC≌△BAD。

求證:ABCD。
B.選修4 - 2:矩陣與變換
求矩陣的逆矩陣。
C.選修4 - 4:坐標(biāo)系與參數(shù)方程
已知曲線C的參數(shù)方程為為參數(shù),),求曲線C的普通方程。
D.選修4 - 5:不等式選講
設(shè)>0,求證:。

查看答案和解析>>

一、選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

C

A

C

B

D

C

B

A

二、填空題

13.      14. 7500       15. (-1,1)

16.      。保罚45o          18.

三、解答題

19解:(Ⅰ)

┅┅┅┅┅┅┅4分

因?yàn)?sub>,所以,所以

的取值范圍為┅┅┅┅┅┅┅6分

(Ⅱ)因?yàn)?sub>,所以┅┅┅┅┅┅┅8分

所以的最小值為,當(dāng)為等邊三角形時(shí)取到. ┅┅┅┅┅┅┅12分

20(Ⅰ)證明(方法一)取中點(diǎn),連接,因?yàn)?sub>分別為中點(diǎn),所以,┅┅┅┅┅┅┅3分

所以,所以四邊形為平行四邊形,所以,又因?yàn)?sub>,所以;┅┅┅┅┅┅┅6分

(方法二)取中點(diǎn),連接

因?yàn)?sub>分別為中點(diǎn),所以

又因?yàn)?sub>分別為中點(diǎn),所以┅┅┅┅┅┅┅3分

,

所以面

,所以┅┅┅┅┅┅6分

(方法三)取中點(diǎn),連接,

由題可得,又因?yàn)槊?sub>

所以,又因?yàn)榱庑?sub>,所以.

可以建立如圖所示的空間直角坐標(biāo)系

┅┅┅┅┅┅┅7分

不妨設(shè),

可得

,,,所以

所以,┅┅┅┅┅┅┅9分

設(shè)面的一個(gè)法向量為,則,不妨取,則,所以,又因?yàn)?sub>,所以.

┅┅┅┅┅┅┅12分

 

 

 

 

 

 

 

(Ⅱ)(方法一)

點(diǎn)作的垂線,連接.

因?yàn)?sub>

所以,所以

所以為二面角的平面角. ┅┅┅┅┅┅┅8分

 

因?yàn)槊?sub>,所以點(diǎn)在面上的射影落在上,所以,

所以,不妨設(shè),所以,同理可得.┅┅┅┅┅┅┅10分

所以,所以二面角的大小為┅┅┅┅┅┅┅12分

(方法二)由(Ⅰ)方法三可得,設(shè)面的一個(gè)法向量為,則,不妨取,則.

┅┅┅┅┅┅┅8分

,設(shè)面的一個(gè)法向量為,則,不妨取,則.┅┅┅┅┅┅┅10分

所以,因?yàn)槎娼?sub>為銳角,所以二面角的大小為┅┅┅┅┅┅┅12分

21解:

(Ⅰ)從盒中一次性取出三個(gè)球,取到白球個(gè)數(shù)的分布列是超幾何分布,┅┅┅┅┅┅┅1分

所以期望為,所以,即盒中有 3個(gè)紅球,2 個(gè)白球.┅┅┅┅┅┅┅3分

(Ⅱ)由題可得的取值為0,1,2,3.

,=,,

所以的分布列為

0

1

2

3

P

                                                          ┅┅┅┅┅┅┅11分

E =                                

答:紅球的個(gè)數(shù)為2,的數(shù)學(xué)期望為2    ┅┅┅┅┅┅┅12分

22解:(Ⅰ)由可得,┅┅┅┅┅┅┅2分

,所以,┅┅┅┅┅┅┅4分

,所以,

所以是等差數(shù)列,首項(xiàng)為,公差為1┅┅┅┅┅┅┅6分

(Ⅱ)由(Ⅰ)可得,即┅┅┅┅┅┅┅7分

  ①

  ②┅┅┅┅┅┅9分

①-②可得

所以,所以┅┅12分

23解:(Ⅰ)由題意可知,可行域是以及點(diǎn)為頂點(diǎn)的三角形,

,∴為直角三角形,     ┅┅┅┅┅┅┅2分

∴外接圓C以原點(diǎn)O為圓心,線段A1A2為直徑,故其方程為

∵2b=4,∴b=2.又,可得

∴所求橢圓C1的方程是.           ┅┅┅┅┅┅┅4分

(Ⅱ)設(shè)A(x1,y1),B(x2,y2),,OA的斜率為,則PA的斜率為,則PA的方程為:化簡(jiǎn)為:,    

同理PB的方程為                ┅┅┅┅┅┅┅6分

又PA、PB同時(shí)過P點(diǎn),則x1x0+y1y0=4,x2x0+y2y0=4,

∴AB的直線方程為:x0x+y0y=4               ┅┅┅┅┅┅┅8分

(或者求出以O(shè)P為直徑的圓,然后求出該圓與圓C的公共弦所在直線方程即為AB的方程)

      從而得到

所以      ┅┅┅┅┅┅┅8分

當(dāng)且僅當(dāng).           ┅┅┅┅┅┅┅12分

(或者利用橢圓的參數(shù)方程、函數(shù)求最值等方法求的最大值)

 

 

24解:(Ⅰ)┅┅┅┅┅┅┅2分

①當(dāng),即,在上有,所以單調(diào)遞增;┅┅┅┅┅┅┅4分

②當(dāng),即,當(dāng)時(shí),在上有,所以單調(diào)遞增;當(dāng)時(shí),在上有,所以單調(diào)遞增;┅┅┅┅┅┅┅6分

③當(dāng),即

當(dāng)時(shí),函數(shù)對(duì)稱軸在y軸左側(cè),且,所以在上有,所以單調(diào)遞增;┅┅┅┅┅┅┅8分

當(dāng)時(shí),函數(shù)對(duì)稱軸在右側(cè),且,

兩個(gè)根分別為,所以在上有,即單調(diào)遞增;在上有,即單調(diào)遞減.

綜上:時(shí),單調(diào)遞增;時(shí),單調(diào)遞增,在單調(diào)遞減. ┅┅┅┅┅┅┅10分

(Ⅱ)由(Ⅰ)可知當(dāng)時(shí),有極大值,極小值,所以

,又因?yàn)?sub>

┅┅┅12分

所以

=

同步練習(xí)冊(cè)答案