D.“全等三角形的面積相等 的否命題是假命題 查看更多

 

題目列表(包括答案和解析)

命題“全等三角形的面積一定都相等”的否定是( 。

查看答案和解析>>

下列命題:
①“全等三角形的面積相等”的逆命題;
②“若ab=0,則a=0”的否命題;
③“正三角形的三個角均為60°”的逆否命題.
其中真命題的個數(shù)是( 。

查看答案和解析>>

下列命題:①“若a2<b2,則a<b”的否命題;②“全等三角形面積相等”的逆命題;③“若a>1,則ax2-2ax+a+3>0的解集為R”的逆否命題;④“若
3
x
為有理數(shù),則x為無理數(shù)”的逆否命題.其中正確的命題是( 。

查看答案和解析>>

下列命題:

(1)“全等三角形面積相等”的逆命題;

(2)“正三角形的三個內角都是60°”的否命題;

(3)“若k<0,則方程x2+(2k+1)x+k=0必有兩相異實數(shù)根”的逆否命題.

其中真命題的個數(shù)為(    )

A.0                                     B.1

C.2                                     D.3

查看答案和解析>>

下列命題:(1)若“,則”的逆命題;(2)“全等三角形面積相等”的否命題;(3)“若,則的解集為”的逆否命題;(4)“若為有理數(shù),則為無理數(shù)”.  其中正確的命題是(    ) 

A.(3)(4)    B.(1)(3)    C.(1)(2)     D.(2)(4)

 

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

C

C

A

A

D

C

B

A

D

B

B

二、填空題

13.   14.     15.7500    16.

三、解答題

17.證明:(Ⅰ)取AB的中點M,連FM,MC, ┅┅┅┅2分

∵ F、M分別是AE、BA的中點  

∴ FM∥EB, FM=EB=CD, ┅┅┅┅┅┅┅4分

∵ EB、CD都垂直于平面ABC 

∴ CD∥BE∴ CD∥FM,

∴四邊形FMCD是平行四邊形,

∴ FD∥MC.又∵

∴FD∥平面ABC                 ┅┅┅┅┅┅┅6分          

(Ⅱ)∵M是AB的中點,CA=CB,

∴CM⊥AB, ┅┅┅┅┅┅┅8分

又  CM⊥BE, ∴CM⊥面EAB, ∴CM⊥BF, ∴FD⊥BF, ┅┅┅┅┅┅┅10分

∵F是AE的中點, EB=AB∴BF⊥EA. ∴BF⊥平面ADE      ┅┅┅┅┅┅┅12分

 

18解:

(Ⅰ)實數(shù)對

共16種不同的情況,有16條不同的直線.┅┅┅┅┅┅┅4分

當實數(shù)對時,直線的斜率,直線傾斜角大于,

所以直線傾斜角大于的概率為;┅┅┅┅┅┅┅6分

(Ⅱ)直線在x軸上的截距與在y軸上截距之差,即,┅┅┅┅┅┅┅8分

當實數(shù)對,┅┅┅┅┅┅┅10分

所以直線在x軸上的截距與在y軸上截距之差小于7的概率為. ┅┅┅┅12分

 

19解:(1)

┅┅┅┅┅┅┅4分

因為,所以,所以,

的取值范圍為 ┅┅┅┅┅┅┅6分

(Ⅱ)因為,所以 ┅┅┅┅┅┅┅8分

所以的最小值為,當為等邊三角形時取到. ┅┅┅┅┅┅┅12分

20解:(Ⅰ)的首項為,所以 ┅┅┅┅┅┅┅3分

所以,所以是等差數(shù)列,首項為,公差為1

┅┅┅┅┅┅┅6分

(Ⅱ)由(Ⅰ)可得,即 ┅┅┅┅┅┅┅7分

  ①

  ②┅┅┅┅┅┅9分

①-②可得

所以,所以┅┅12分

21解:(Ⅰ)由題意可知,可行域是以及點為頂點的三角形,∵,∴為直角三角形,                 ┅┅┅┅┅┅┅2分

∴外接圓C以原點O為圓心,線段A1A2為直徑,故其方程為

2a=4,∴a=2.又,可得

∴所求圓C與橢圓C1的方程分別是. ┅┅┅┅┅┅┅4分

(Ⅱ2) F,設,,

時,Q點為(),可得,∴PFOQ.

時,,可以解得,也有PFOQ.  ┅┅┅6分

時,OP的斜率為,則切線PQ的斜率為,則PQ的方程為:化簡為:,          ┅┅┅8分

交得Q點坐標為             ┅┅┅10分

∴PFOQ.

綜上,直線PF與直線OQ垂直.                       ┅┅┅12分

22解:(Ⅰ) ┅┅┅┅┅┅┅2分

①當,即,在R上有,所以在R單調遞增;┅┅┅┅┅┅┅4分

②當,即,當時,在上有,所以在R單調遞增;當時,在上有,所以在R單調遞增;┅┅┅┅┅┅┅6分

③當,即

兩個根分別為,所以在上有,即單調遞增;

上有,即單調遞減.┅┅┅┅┅┅┅8分

(Ⅱ)由(Ⅰ)可知當時函數(shù)有極值,

時,,所以不符合題意.

時,,此時函數(shù)的極值點都為正數(shù)

┅┅┅┅┅┅┅10分

有極大值,極小值,所以

,

又因為,

所以

=,┅┅┅┅┅┅┅12分

,則,所以單調遞增,所以,即極值之和小于. ┅┅┅┅┅┅┅14分

 

 

 

 

 

 


同步練習冊答案