已知實數(shù)滿足.則關于的方程有實數(shù)根的概率為 查看更多

 

題目列表(包括答案和解析)

已知有序?qū)崝?shù)對(a,b)滿足a∈[O,3],b∈[0,2],則關于x的一元二次方程x2+2ax+b2=0有實數(shù)根的概率是
 

查看答案和解析>>

已知函數(shù)f(x)=a|x|+
2ax
(a>0,a≠1),
(1)若a>1,且關于x的方程f(x)=m有兩個不同的正數(shù)解,求實數(shù)m的取值范圍;
(2)設函數(shù)g(x)=f(-x),x∈[-2,+∞),g(x)滿足如下性質(zhì):若存在最大(。┲,則最大(。┲蹬ca無關.試求a的取值范圍.

查看答案和解析>>

已知向量滿足|
a
|=2|
b
|,若p:關于x的方程x2+|
a
|x+
a
b
=0沒有實數(shù)根;q:向量
a
,
b
的夾角θ∈[0,
π
6
),則p是q的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

已知函數(shù)f(x)=
2
π
|x+π|, x<-
π
2
-sinx, -
π
2
≤x≤0
1
3
x2-
2
3
x, x>0
,若關于x的方程滿足f(x)=m(m∈R)有且僅有三個不同的實數(shù)根,且α,β分別是三個根中最小根和最大根,則β-sin(
π
3
+α)
的值為
5
2
5
2

查看答案和解析>>

已知關于x的方程-2x2+bx+c=0,若b、c∈{0,1,2,3,4},記“該方程有實數(shù)根x1、x2且滿足-1≤x1≤x2≤2”為事件A,則事件A發(fā)生的概率為( 。

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

C

C

A

A

D

C

B

A

D

B

B

二、填空題

13.   14.     15.7500    16.

三、解答題

17.證明:(Ⅰ)取AB的中點M,連FM,MC, ┅┅┅┅2分

∵ F、M分別是AE、BA的中點  

∴ FM∥EB, FM=EB=CD, ┅┅┅┅┅┅┅4分

∵ EB、CD都垂直于平面ABC 

∴ CD∥BE∴ CD∥FM,

∴四邊形FMCD是平行四邊形,

∴ FD∥MC.又∵

∴FD∥平面ABC                 ┅┅┅┅┅┅┅6分          

(Ⅱ)∵M是AB的中點,CA=CB,

∴CM⊥AB, ┅┅┅┅┅┅┅8分

又  CM⊥BE, ∴CM⊥面EAB, ∴CM⊥BF, ∴FD⊥BF, ┅┅┅┅┅┅┅10分

∵F是AE的中點, EB=AB∴BF⊥EA. ∴BF⊥平面ADE      ┅┅┅┅┅┅┅12分

 

18解:

(Ⅰ)實數(shù)對

共16種不同的情況,有16條不同的直線.┅┅┅┅┅┅┅4分

當實數(shù)對時,直線的斜率,直線傾斜角大于,

所以直線傾斜角大于的概率為;┅┅┅┅┅┅┅6分

(Ⅱ)直線在x軸上的截距與在y軸上截距之差,即,┅┅┅┅┅┅┅8分

當實數(shù)對,┅┅┅┅┅┅┅10分

所以直線在x軸上的截距與在y軸上截距之差小于7的概率為. ┅┅┅┅12分

 

19解:(1)

┅┅┅┅┅┅┅4分

因為,所以,所以

的取值范圍為 ┅┅┅┅┅┅┅6分

(Ⅱ)因為,所以 ┅┅┅┅┅┅┅8分

所以的最小值為,當為等邊三角形時取到. ┅┅┅┅┅┅┅12分

20解:(Ⅰ)的首項為,所以 ┅┅┅┅┅┅┅3分

所以,所以是等差數(shù)列,首項為,公差為1

┅┅┅┅┅┅┅6分

(Ⅱ)由(Ⅰ)可得,即 ┅┅┅┅┅┅┅7分

  ①

  ②┅┅┅┅┅┅9分

①-②可得

所以,所以┅┅12分

21解:(Ⅰ)由題意可知,可行域是以及點為頂點的三角形,∵,∴為直角三角形,                 ┅┅┅┅┅┅┅2分

∴外接圓C以原點O為圓心,線段A1A2為直徑,故其方程為

2a=4,∴a=2.又,可得

∴所求圓C與橢圓C1的方程分別是. ┅┅┅┅┅┅┅4分

(Ⅱ2) F,設,,

時,Q點為(),可得,∴PFOQ.

時,,可以解得,也有PFOQ.  ┅┅┅6分

時,OP的斜率為,則切線PQ的斜率為,則PQ的方程為:化簡為:,          ┅┅┅8分

交得Q點坐標為             ┅┅┅10分

,

∴PFOQ.

綜上,直線PF與直線OQ垂直.                       ┅┅┅12分

22解:(Ⅰ) ┅┅┅┅┅┅┅2分

①當,即,在R上有,所以在R單調(diào)遞增;┅┅┅┅┅┅┅4分

②當,即,當時,在上有,所以在R單調(diào)遞增;當時,在上有,所以在R單調(diào)遞增;┅┅┅┅┅┅┅6分

③當,即

兩個根分別為,所以在上有,即單調(diào)遞增;

上有,即單調(diào)遞減.┅┅┅┅┅┅┅8分

(Ⅱ)由(Ⅰ)可知當時函數(shù)有極值,

時,,所以不符合題意.

時,,此時函數(shù)的極值點都為正數(shù)

┅┅┅┅┅┅┅10分

有極大值,極小值,所以

又因為,

所以

=,┅┅┅┅┅┅┅12分

,則,所以單調(diào)遞增,所以,即極值之和小于. ┅┅┅┅┅┅┅14分

 

 

 

 

 

 


同步練習冊答案