已知可行域的外接圓C與軸交于點(diǎn)A1.A2.橢圓C1以線段A1A2為長(zhǎng)軸.離心率. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

       已知定理:若“為常數(shù),滿足,則函數(shù)的圖象關(guān)于點(diǎn)中心對(duì)稱。”設(shè)函數(shù),定義域?yàn)锳。

   (1)證明:函數(shù)的圖象關(guān)于點(diǎn)中心對(duì)稱;

   (2)當(dāng)時(shí),求函數(shù)值的取值范圍;

   (3)對(duì)于給定的,設(shè)計(jì)構(gòu)造過(guò)程:,若,構(gòu)造過(guò)程將繼續(xù)下去;若,構(gòu)造過(guò)程都可以無(wú)限進(jìn)行下去,求的值。

查看答案和解析>>

(本小題滿分12分)(Ⅰ)在已知的坐標(biāo)系中作出滿足約束條件:;的可行性區(qū)域;

(Ⅱ)實(shí)數(shù)滿足(Ⅰ)中約束條件,求目標(biāo)函數(shù)的取值范圍.

查看答案和解析>>

(本小題滿分12分)(Ⅰ)在已知的坐標(biāo)系中作出滿足約束條件:;的可行性區(qū)域;
(Ⅱ)實(shí)數(shù)滿足(Ⅰ)中約束條件,求目標(biāo)函數(shù)的取值范圍.

查看答案和解析>>

(本小題滿分12分)(Ⅰ)在已知的坐標(biāo)系中作出滿足約束條件:;;的可行性區(qū)域;

(Ⅱ)實(shí)數(shù)滿足(Ⅰ)中約束條件,求目標(biāo)函數(shù)的取值范圍.

 

查看答案和解析>>

一、選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

C

C

A

A

D

C

B

A

D

B

B

二、填空題

13.   14.     15.7500    16.

三、解答題

17.證明:(Ⅰ)取AB的中點(diǎn)M,連FM,MC, ┅┅┅┅2分

∵ F、M分別是AE、BA的中點(diǎn)  

∴ FM∥EB, FM=EB=CD, ┅┅┅┅┅┅┅4分

∵ EB、CD都垂直于平面ABC 

∴ CD∥BE∴ CD∥FM,

∴四邊形FMCD是平行四邊形,

∴ FD∥MC.又∵

∴FD∥平面ABC                 ┅┅┅┅┅┅┅6分          

(Ⅱ)∵M(jìn)是AB的中點(diǎn),CA=CB,

∴CM⊥AB, ┅┅┅┅┅┅┅8分

又  CM⊥BE, ∴CM⊥面EAB, ∴CM⊥BF, ∴FD⊥BF, ┅┅┅┅┅┅┅10分

∵F是AE的中點(diǎn), EB=AB∴BF⊥EA. ∴BF⊥平面ADE      ┅┅┅┅┅┅┅12分

 

18解:

(Ⅰ)實(shí)數(shù)對(duì)

共16種不同的情況,有16條不同的直線.┅┅┅┅┅┅┅4分

當(dāng)實(shí)數(shù)對(duì)時(shí),直線的斜率,直線傾斜角大于,

所以直線傾斜角大于的概率為;┅┅┅┅┅┅┅6分

(Ⅱ)直線在x軸上的截距與在y軸上截距之差,即,┅┅┅┅┅┅┅8分

當(dāng)實(shí)數(shù)對(duì)時(shí),┅┅┅┅┅┅┅10分

所以直線在x軸上的截距與在y軸上截距之差小于7的概率為. ┅┅┅┅12分

 

19解:(1)

┅┅┅┅┅┅┅4分

因?yàn)?sub>,所以,所以,

的取值范圍為 ┅┅┅┅┅┅┅6分

(Ⅱ)因?yàn)?sub>,所以 ┅┅┅┅┅┅┅8分

所以的最小值為,當(dāng)為等邊三角形時(shí)取到. ┅┅┅┅┅┅┅12分

20解:(Ⅰ)的首項(xiàng)為,所以 ┅┅┅┅┅┅┅3分

所以,所以是等差數(shù)列,首項(xiàng)為,公差為1

┅┅┅┅┅┅┅6分

(Ⅱ)由(Ⅰ)可得,即 ┅┅┅┅┅┅┅7分

  ①

  ②┅┅┅┅┅┅9分

①-②可得

所以,所以┅┅12分

21解:(Ⅰ)由題意可知,可行域是以及點(diǎn)為頂點(diǎn)的三角形,∵,∴為直角三角形,                 ┅┅┅┅┅┅┅2分

∴外接圓C以原點(diǎn)O為圓心,線段A1A2為直徑,故其方程為

2a=4,∴a=2.又,可得

∴所求圓C與橢圓C1的方程分別是. ┅┅┅┅┅┅┅4分

(Ⅱ2) F,設(shè),,

當(dāng)時(shí),Q點(diǎn)為(),可得,∴PFOQ.

當(dāng)時(shí),,可以解得,也有PFOQ.  ┅┅┅6分

當(dāng)時(shí),OP的斜率為,則切線PQ的斜率為,則PQ的方程為:化簡(jiǎn)為:,          ┅┅┅8分

交得Q點(diǎn)坐標(biāo)為             ┅┅┅10分

∴PFOQ.

綜上,直線PF與直線OQ垂直.                       ┅┅┅12分

22解:(Ⅰ) ┅┅┅┅┅┅┅2分

①當(dāng),即,在R上有,所以在R單調(diào)遞增;┅┅┅┅┅┅┅4分

②當(dāng),即,當(dāng)時(shí),在上有,所以在R單調(diào)遞增;當(dāng)時(shí),在上有,所以在R單調(diào)遞增;┅┅┅┅┅┅┅6分

③當(dāng),即

兩個(gè)根分別為,所以在上有,即單調(diào)遞增;

上有,即單調(diào)遞減.┅┅┅┅┅┅┅8分

(Ⅱ)由(Ⅰ)可知當(dāng)時(shí)函數(shù)有極值,

當(dāng)時(shí),,所以不符合題意.

當(dāng)時(shí),,此時(shí)函數(shù)的極值點(diǎn)都為正數(shù)

┅┅┅┅┅┅┅10分

有極大值,極小值,所以

,

又因?yàn)?sub>,

所以

=,┅┅┅┅┅┅┅12分

,則,所以時(shí)單調(diào)遞增,所以,即極值之和小于. ┅┅┅┅┅┅┅14分

 

 

 

 

 

 


同步練習(xí)冊(cè)答案