題目列表(包括答案和解析)
如圖,在三棱柱中,側(cè)面,為棱上異于的一點,,已知,求:
(Ⅰ)異面直線與的距離;
(Ⅱ)二面角的平面角的正切值.
【解析】第一問中,利用建立空間直角坐標(biāo)系
解:(I)以B為原點,、分別為Y,Z軸建立空間直角坐標(biāo)系.由于,
在三棱柱中有
,
設(shè)
又側(cè)面,故. 因此是異面直線的公垂線,則,故異面直線的距離為1.
(II)由已知有故二面角的平面角的大小為向量與的夾角.
如圖,四棱錐S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點,SE=2EB
(Ⅰ)證明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小 .
【解析】本試題主要考查了立體幾何中的運用。
(1)證明:因為SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點,SE=2EB 所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.
(Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知
AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.
故△ADE為等腰三角形.
取ED中點F,連接AF,則AF⊥DE,AF2= AD2-DF2 =.
連接FG,則FG∥EC,F(xiàn)G⊥DE.
所以,∠AFG是二面角A-DE-C的平面角.
連接AG,AG= 2 ,F(xiàn)G2= DG2-DF2 =,
cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,
所以,二面角A-DE-C的大小為120°
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com