第9題圖 第10題圖 查看更多

 

題目列表(包括答案和解析)

圖的曲線表示一個騎自行車離家的距離與時間的關系.騎車者9時離開家,15時回家,根據這個曲線圖,請你回答下列頭問題:

(1)最初到達離家最遠的地方是什么時間?離家多遠?

(2)何時開始第一次休息?休息多長時間?

(3)第一次休息時,離家多遠?

(4)11∶00到12∶00他騎了多少千米?

(5)他在9∶00~10∶00和10∶00~10∶30的平均速度分別是多少?

(6)他在哪段時間里停止前進并休息用午餐?

查看答案和解析>>

圖的曲線表示一個騎自行車離家的距離與時間的關系.騎車者9時離開家,15時回家,根據這個曲線圖,請你回答下列問題:

(1)最初到達離家最遠的地方是什么時間?離家多遠?

(2)何時開始第一次休息?休息多長時間?

(3)第一次休息時,離家多遠?

(4)11∶001200他騎了多少千米?

(5)他在900100010001030的平均速度分別是多少?

(6)他在哪段時間里停止前進并休息用午餐?

查看答案和解析>>

(本小題滿分13分)

某市為了了解今年高中畢業(yè)生的體能狀況,從本市某校高中畢業(yè)班中抽取一個班進行鉛球測試,成績在8.0米(精確到0.1米)以上的為合格.把所得數據進行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30.第6小組的頻數是7.

(I) 求這次鉛球測試成績合格的人數;

(II) 用此次測試結果估計全市畢業(yè)生的情況.若從                       今年的高中畢業(yè)生中隨機抽取兩名,記表示兩人中成績不合格的人數,求的分布列及數學期望;

(III) 經過多次測試后,甲成績在8~10米之間,乙成績在9.5~10.5米之間,現(xiàn)甲、乙各投擲一次,求甲比乙投擲遠的概率.

查看答案和解析>>

(本小題滿分12分)

某市為了了解今年高中畢業(yè)生的體能狀況,從本市某校高中畢業(yè)班中抽取一個班進行鉛球測試,成績在8.0米(精確到0.1米)以上的為合格.把所得數據進行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30.第6小組的頻數是7.

(1) 求這次鉛球測試成績合格的人數;

(2) 用此次測試結果估計全市畢業(yè)生的情況.若從今年的高中畢業(yè)生中隨機抽取兩名,記表示兩人中成績不合格的人數,求的分布列及數學期望;

(3) 經過多次測試后,甲成績在8~10米之間,乙成績在9.5~10.5米之間,現(xiàn)甲、乙各投擲一次,求甲比乙投擲遠的概率.

查看答案和解析>>

(本小題滿分10分)

某食品公司為了解某種新品種食品的市場需求,進行了20天的測試,人為地調控每天產品的單價P(元/件):前10天每天單價呈直線下降趨勢(第10天免費贈送品嘗),后10天呈直線上升,其中4天的單價記錄如下表:

時間(將第x天記為x) x

1

10

11

18

單價(元/件)P

9

0

1

8

而這20天相應的銷售量Q(百件/天)與x對應的點(x,Q)在如圖所示的半圓上.

(1)寫出每天銷售y(元)與時間x(天)的函數關系式y(tǒng)=f(x);

(2)在這20天中哪一天銷售收入最高?為使每天銷售收入最高,按此測試結果應將單價P設定為多少元為好?(結果精確到1元)

 

查看答案和解析>>

1.解:依題設有:     ………………………………………4分

 令,則           …………………………………………5分

           …………………………………………7分

  ………………………………10分

2.解:以有點為原點,極軸為軸正半軸,建立平面直角坐標系,兩坐標系中取相同的長度單位.(1),由

所以

為圓的直角坐標方程.  ……………………………………3分

同理為圓的直角坐標方程. ……………………………………6分

(2)由      

相減得過交點的直線的直角坐標方程為. …………………………10分

3.(必做題)(本小題滿分10分)

解:(1)記“恰好選到1個曾經參加過數學研究性學習活動的同學”為事件的, 則其概率為                …………………………………………4分

    答:恰好選到1個曾經參加過數學研究性學習活動的同學的概率為

(2)隨機變量

                        ……………………5分

                   …………………………6分

                  ………………………………7分

∴隨機變量的分布列為

 

2

3

4

P

                    …………………………10分

4.(必做題)(本小題滿分10分)

(1),,,  ,

              ……………………………………3分

(2)平面BDD1的一個法向量為

設平面BFC1的法向量為

得平面BFC1的一個法向量

  ∴所求的余弦值為    ……6分

(3)設

,由

    

時,

時,∴   ……………………………………10分


同步練習冊答案