(1)求證:直線與曲線.都相切.且切于同一點, 查看更多

 

題目列表(包括答案和解析)

已知曲線C1:y=
x2e
+e(e為自然對數(shù)的底數(shù)),曲線C2:y=2elnx和直線m:y=2x.
(I)求證:直線m與曲線C1、C2都相切,且切于同一點;
(II)設(shè)直線x=t(t>0)與曲線C1、C2及直線m分別交于M、N、P,記f(t)=|MP|-|PN|,求f(t)在[e-3,e3]上的最大值.

查看答案和解析>>

已知曲線C:x2+y2+2kx+(4k+10)y+10k+20=0,其中k≠-1.

(1)求證:曲線C都表示圓,并且這些圓心都在同一條直線上;

(2)證明:曲線C過定點;

(3)若曲線C與x軸相切,求k的值.

查看答案和解析>>

已知曲線C:x2+y2+2kx+(4k+10)y+10k+20=0,其中k≠-1.

(1)求證:曲線C都表示圓,并且這些圓心都在同一條直線上;

(2)證明:曲線C過定點;

(3)若曲線C與x軸相切,求k的值.

查看答案和解析>>

設(shè)直線. 若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意xR都有. 則稱直線l為曲線S的“上夾線”.

(Ⅰ)已知函數(shù).求證:為曲線的“上夾線”.

(Ⅱ)觀察下圖:

          

   

根據(jù)上圖,試推測曲線的“上夾線”的方程,并給出證明.

查看答案和解析>>

設(shè)直線. 若直線l與曲線S同時滿足下列兩個條件:

①直線l與曲線S相切且至少有兩個切點;

②對任意xR都有. 則稱直線l為曲線S的“上夾線”.

(1) 類比“上夾線”的定義,給出“下夾線”的定義;

(2) 已知函數(shù)取得極小值,求a,b的值;

(3) 證明:直線是(2)中曲線的“上夾線”。

查看答案和解析>>

1.解:依題設(shè)有:     ………………………………………4分

 令,則           …………………………………………5分

           …………………………………………7分

  ………………………………10分

2.解:以有點為原點,極軸為軸正半軸,建立平面直角坐標系,兩坐標系中取相同的長度單位.(1),,由

所以

為圓的直角坐標方程.  ……………………………………3分

同理為圓的直角坐標方程. ……………………………………6分

(2)由      

相減得過交點的直線的直角坐標方程為. …………………………10分

3.(必做題)(本小題滿分10分)

解:(1)記“恰好選到1個曾經(jīng)參加過數(shù)學研究性學習活動的同學”為事件的, 則其概率為                …………………………………………4分

    答:恰好選到1個曾經(jīng)參加過數(shù)學研究性學習活動的同學的概率為

(2)隨機變量

                        ……………………5分

                   …………………………6分

                  ………………………………7分

∴隨機變量的分布列為

 

2

3

4

P

                    …………………………10分

4.(必做題)(本小題滿分10分)

(1),, 

              ……………………………………3分

(2)平面BDD1的一個法向量為

設(shè)平面BFC1的法向量為

得平面BFC1的一個法向量

  ∴所求的余弦值為    ……6分

(3)設(shè)

,由

,

    

時,

時,∴   ……………………………………10分


同步練習冊答案