2.設(shè)與()都是非零向量.則+=.是∥()成立的 A.充要條件 B.必要不充分條件 C.充分不必要條件 D.既不充分又不必要條件 查看更多

 

題目列表(包括答案和解析)

設(shè)a,b都是非零向量,

(1)若向量ab反向,則a-ba的方向_________,且|a-b|_________|a|+|b|;

(2)若ab同向,且|a|>|b|則a-ba的方向_________且|a-b|_________|a|-|b|.

查看答案和解析>>

設(shè)
a
,
b
都是非零向量,命題P:
a
b
<0
,命題Q:
a
b
的夾角為鈍角.則P是Q的( 。

查看答案和解析>>

設(shè)
a
,
b
都是非零向量,命題P:
a
b
<0
,命題Q:
a
b
的夾角為鈍角.則P是Q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

有下列幾個(gè)命題:①若都是非零向量,則“”是“”的充要條件;②已知等腰△ABC的腰為底的2倍,則頂角A的正切值是;③在平面直角坐標(biāo)系xoy中,四邊形ABCD的邊AB∥DC,AD∥BC,已知點(diǎn)A(-2,0),B(6,8),C(8,6),則D點(diǎn)的坐標(biāo)為(0,-1);④設(shè),為同一平面內(nèi)具有相同起點(diǎn)的任意三個(gè)非零向量,且滿足不共線,,||=||,則||的值一定等于以,為鄰邊的平行四邊形的面積.其中正確命題的序號(hào)是    .(寫出全部正確結(jié)論的序號(hào))

查看答案和解析>>

有下列幾個(gè)命題:①若
a
b
-
c
都是非零向量,則“
a
b
=
a
c
”是“
a
⊥(
b
-
c
)
”的充要條件;②已知等腰△ABC的腰為底的2倍,則頂角A的正切值是
15
7
;③在平面直角坐標(biāo)系xoy中,四邊形ABCD的邊AB∥DC,AD∥BC,已知點(diǎn)A(-2,0),B(6,8),C(8,6),則D點(diǎn)的坐標(biāo)為(0,-1);④設(shè)
a
,
b
,
c
為同一平面內(nèi)具有相同起點(diǎn)的任意三個(gè)非零向量,且滿足
a
b
不共線,
a
c
,|
a
|=|
c
|,則|
b
c
|的值一定等于以
a
,
b
為鄰邊的平行四邊形的面積.其中正確命題的序號(hào)是
 
.(寫出全部正確結(jié)論的序號(hào))

查看答案和解析>>

 

一、選擇題(每小題5 分,共40 分)

DCABD  ABC

二、填空題(每小題5 分,共35分)

9.     10.     11.91    12.②④

13.     14.(i)(2分)    (ii)(3分)

15.(i)(3分);    (ii) (2分)

20090401

,2 分

8,3 分

解得;……………………4分分

(2)

 ………………6分

…………8分

由余弦定理得

 ……………………10分

 …………………………12分

17.解:(1)= 1 表示經(jīng)過操作以后A 袋中只有一個(gè)紅球,有兩種情形出現(xiàn)

①先從A 中取出1 紅和1 白,再?gòu)腂 中取一白到A 中

②先從A 中取出2 紅球,再?gòu)腂 中取一紅球到A 中

…………………………(5分)

(2)同(1)中計(jì)算方法可知:

于是的概率分別列

0

1

2

3

P

 

E=……………………12分

18.解:(1)AB//平面DEF. 在△ABC 中,

∵E、F分別是AC、BC 上的點(diǎn),且滿足

∴AB//EF.

  • <li id="xph80"></li>
        • <dfn id="xph80"><strong id="xph80"></strong></dfn>
          <ol id="xph80"></ol>
        • <sup id="xph80"></sup>
          <button id="xph80"><tbody id="xph80"></tbody></button>

            ∴AB//平面DEF. …………3 分

            (2)過D點(diǎn)作DG⊥AC 于G,連結(jié)BG,

            ∵AD⊥CD, BD⊥CD,

            ∴∠ADB 是二面角A―CD―B 的平面角.

            ∴∠ADB = 90°, 即BD⊥AD.

            ∴BD⊥平面ADC.

            ∴BD⊥AC.

            ∴AC⊥平面BGD.

            ∴BG⊥AC .

            ∴∠BGD 是二面角B―AC―D 的平面角. 5 分

            在Rt△ADC 中,AD = a,DC = a,AC = 2a,

            在Rt

            即二面角B―AC―D的大小為……………………8分

            (2)∵AB//EF,

            ∴∠DEF(或其補(bǔ)角)是異面直線AB 與DE 所成的角. ………………9 分

            ∵AB =

            ∴EF=  ak .

            又DC = a,CE = kCA = 2ak,

            ∴DF= DE =

            ………………4分

            ∴cos∠DEF=………………11分

            …………………………12分

            19.解:(1)依題意建立數(shù)學(xué)模型,設(shè)第n 次服藥后,藥在體內(nèi)的殘留量為an(毫克)

            a1 = 220,a2 =220×1.4 ……………………2 分

            a4 = 220 + a2 (1-0.6) = 343.2 ……………………5 分

            (2)由an = 220 + 0.4an―1 (n≥2 ),

            可得

            所以()是一個(gè)等比數(shù)列,

            不會(huì)產(chǎn)生副作用……………………13分

            20.解:(1)由條件知:

            ……………………2分

            b=1,

            ∴橢圓C的方程為:……………………4分

            (2)依條件有:………………5分

            …………7分

            ………………7分

            …………………………9分

            由弦長(zhǎng)公式得

                得

            =

             …………………………13分

            21.解:(1)當(dāng)

            上單調(diào)遞增,

            ……………………5分

            (2)(1),

            需求一個(gè),使(1)成立,只要求出

            的最小值,

            滿足

            上↓

            ↑,

            只需證明內(nèi)成立即可,

            為增函數(shù)

            ,故存在與a有關(guān)的正常數(shù)使(1)成立。13分

             


            同步練習(xí)冊(cè)答案