(Ⅱ)設.若直線AP.BP分別與橢圓相交于異于A.B的點M.N. 查看更多

 

題目列表(包括答案和解析)

設A,B分別為橢圓
x2
a2
+
y2
b2
=1(a,b>0)
的左、右頂點,橢圓長半軸的長等于焦距,且x=4為它的右準線.
(Ⅰ)求橢圓的方程;
(Ⅱ)設P為右準線上不同于點(4,0)的任意一點,若直線AP,BP分別與橢圓相交于異于A,B的點M、N,證明點B在以MN為直徑的圓內(nèi).
(此題不要求在答題卡上畫圖)

查看答案和解析>>

設A,B分別為橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點,C,D分別為橢圓上、下頂點,橢圓長半軸的長等于焦距,且四邊形ACBD 的面積為4
3

(1)求橢圓的方程;
(2)設Q為橢圓上異于A、B的點,求證:直線QA與直線QB的斜率之積為定值;
(3)設P為直線x=
a2
c
 .(a2=b2+c2)
上不同于點(
a2
c
,0)的任意一點,若直線AP,BP分別與橢圓相交于異于A,B的點M、N,證明:點B在以MN為直徑的圓內(nèi).

查看答案和解析>>

設A,B分別為橢圓的左、右頂點,橢圓長半軸的長等于焦距,且x=4為它的右準線.
(Ⅰ)求橢圓的方程;
(Ⅱ)設P為右準線上不同于點(4,0)的任意一點,若直線AP,BP分別與橢圓相交于異于A,B的點M、N,證明點B在以MN為直徑的圓內(nèi).
(此題不要求在答題卡上畫圖)

查看答案和解析>>

設A,B分別為橢圓的左、右頂點,橢圓長半軸的長等于焦距,且x=4為它的右準線.
(Ⅰ)求橢圓的方程;
(Ⅱ)設P為右準線上不同于點(4,0)的任意一點,若直線AP,BP分別與橢圓相交于異于A,B的點M、N,證明點B在以MN為直徑的圓內(nèi).
(此題不要求在答題卡上畫圖)

查看答案和解析>>

設A,B分別為橢圓的左、右頂點,橢圓長半軸的長等于焦距,且x=4為它的右準線.
(Ⅰ)求橢圓的方程;
(Ⅱ)設P為右準線上不同于點(4,0)的任意一點,若直線AP,BP分別與橢圓相交于異于A,B的點M、N,證明點B在以MN為直徑的圓內(nèi).
(此題不要求在答題卡上畫圖)

查看答案和解析>>

一、選擇題(每小題5分,共50分)

1.B  2.C  3.A  4.D  5.C  6.D  7.B  8.C  9.A  10.D

二、填空題(每小題4分,共24分)

11.180  12.60  13.  14.2   15.5   16.

三、解答題(本大題共6小題,共76分)

17.(本題12分)

    解:(Ⅰ)

                         ………………………………(2分)

 

                     …………(4分)

                    

                                             …………………………………(6分)

       (Ⅱ)

               .                     ……………(8分)

              由已知條件

              根據(jù)正弦定理,得               …………………(10分)

                   ……………………(12分)

 

 

18.(本題12分)

解:(Ⅰ)          ……………………(2分)

                                  ……………………(4分)

                        

                                                   ……………………(6分)

   當時,有(人).

   的基礎上,(人),

                        ……………………(8分)

 

(Ⅱ) …………(10分)

    

                         …………………………………(12分)

 

 

19.(本題12分)

證明:(Ⅰ)在△中,

            

                              

                            

                 

                                     …………………………(2分)

                 

                  平面.         …………………………(4分)

                  平面

                                       …………………………(6分)

(Ⅱ)連接于M,則M為的中點 …………………………(8分)

連接DM,則,              …………………………(10分)

平面,平面

 ∥平面                   …………………………(12分)

 

 

20.(本題12分)

    解:(Ⅰ)由已知得,又,

                  .   …………………………(2分)

                  ,公差

                  由,得   …………………………(4分)

                    

.解得(舍去).

.           …………………………(6分)

(Ⅱ)由

          …………………………(8分)

                           …………………………(9分)

   是等差數(shù)列.

    ………………………(11分)

                 ……………………(12分)

 

21.(本題14分)

  解:(Ⅰ)依題意得

            .                  ………………………(2分)

            把(1,3)代入

解得

橢圓的方程為.                 ………………………(4分)

(Ⅱ)由(Ⅰ)得,設,如圖所示

   點在橢圓上,

.       ①

點異于頂點,

、、三點共線,可得

從而     …………………………(7分)

 ②  …………(8分)

將①式代入②式化簡得            …………(10分)

                                     …………(12分)

于是為銳角,為鈍角.                ……………(14分)

 

 

22.(本題14分)

解:(Ⅰ),

                  令,得.          ………………(2分)

                  當時,上單調(diào)遞增;

                  當時,上單調(diào)遞減,

                  而,

                  時,的值域是.    ……………(4分)(Ⅱ)設函數(shù)上的值域是A,

若對任意.總存在1,使,

.                               ……………(6分)

①當時,,

               函數(shù)上單調(diào)遞減.

              ,

時,不滿足;    ……………………(8分)

②當時,,

,得(舍去        ………………(9分)

(i)時,的變化如下表:

0

2

 

-

0

+

 

0

,解得.      …………………(11分)

(ii)當時,

       函數(shù)上單調(diào)遞減.

       ,時,不滿足.         …………………(13分)

        綜上可知,實數(shù)的取值范圍是.     ……………………(14分)

 


同步練習冊答案