13.函數(shù)處的切線方程為 . 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)處的切線方程為

   (I)求c、d的值;

   (II)求函數(shù)f(x)的單調(diào)區(qū)間。

查看答案和解析>>

(14分)設(shè)函數(shù)曲線處的切線方程為y=1。

(1)確定b,c的值。

(2)若過(guò)點(diǎn)(0,2)能且只能作曲線y=f(x)的一條切線,求a的   取值范圍。

 

 

查看答案和解析>>

已知函數(shù)在()處的切線方程為。

(Ⅰ)求函數(shù)的表達(dá)式;

(Ⅱ)當(dāng)滿足什么條件時(shí),函數(shù)在區(qū)間上單調(diào)遞增?

 

查看答案和解析>>

設(shè)函數(shù),曲線處的切線方程為。
(1)試求a,b的值及函數(shù)的單調(diào)區(qū)間;
(2)證明:

查看答案和解析>>

設(shè)函數(shù),曲線在點(diǎn)處的切線方程為。

(1)求的解析式;

(2)證明:曲線上任一點(diǎn)處的切線與直線和直線所圍成的三角形面積為定值,并求此定值。

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分。

1―5 DABBA    6―10 DDCCB    11―12 AC

二、填空題:本大題共4小題,每小題5分,共20分。

13.    14.    15.    16.②④

三、解答題:本大題共6小題,滿分70分。

17.(本小題滿分10分)

   (I)解:

時(shí),

   ………………2分

   ………………4分

, 

  ………………5分

   (II)解:

18.(本小題滿分12分)

   (I)解:

   (II)解:

由(I)知:

   (III)解:

<option id="w86s4"><source id="w86s4"></source></option>
      • 19.(本小題滿分12分)

        解法一:

           (I)證明

        如圖,連結(jié)AC,AC交BD于點(diǎn)G,連結(jié)EG。

        ∵ 底面ABCD是正方形,

        ∴ G為AC的中點(diǎn).

        又E為PC的中點(diǎn),

        ∴EG//PA。

        ∵EG平面EDB,PA平面EDB,

        ∴PA//平面EDB   ………………4分

           (II)證明:

        ∵ PD⊥底面ABCD,∴PD⊥BC,PD⊥DC,PD⊥DB

        又∵BC⊥DC,PD∩DC=D,

        ∴BC⊥平面PDC。

        ∴PC是PB在平面PDC內(nèi)的射影。

        ∵PD⊥DC,PD=DC,點(diǎn)E是PC的中點(diǎn),

        ∴DE⊥PC。

        由三垂線定理知,DE⊥PB。

        ∵DE⊥PB,EF⊥PB,DE∩EF=E,

        ∴PB⊥平面EFD。   …………………………8分

           (III)解:

        ∵PB⊥平面EFD,

        ∴PB⊥FD。

        又∵EF⊥PB,F(xiàn)D∩EF=F,

        ∴∠EFD就是二面角C―PB―D的平面角!10分

        ∵PD=DC=BC=2,

        ∴PC=DB=

        ∵PD⊥DB,

        由(II)知:DE⊥PC,DE⊥PB,PC∩PB=P,

        ∴DE⊥平面PBC。

        ∵EF平面PBC,

        ∴DE⊥EF。

        ∴∠EFD=60°。

        故所求二面角C―PB―D的大小為60°。  ………………12分

        解法二:

        如圖,以點(diǎn)D為坐標(biāo)原點(diǎn),DA、DC、DP所在直線分別為x軸、y軸、z軸,

        建立空間直角坐標(biāo)系,得以下各點(diǎn)坐標(biāo):D(0,0,0),A(2,0,0),B(2,2,0),

        C(0,2,0),P(0,0,2)   ………………1分

           (I)證明:

        連結(jié)AC,AC交BD于點(diǎn)G,連結(jié)EG。

        ∵ 底面ABCD是正方形,

        ∴ G為AC的中點(diǎn).G點(diǎn)坐標(biāo)為(1,1,0)。

          • <abbr id="w86s4"></abbr>

              高考資源網(wǎng)www.ks5u.com

              ∴PA//平面EDB   ………………4分

                 (II)證明:

                 (III)解:

              ∵PB⊥平面EFD,

              ∴PB⊥FD。

              又∵EF⊥PB,F(xiàn)D∩EF=F,

              ∴∠EFD就是二面角C―PB―D的平面角!10分

              ∴∠EFD=60°。

              故所求二面角C―PB―D的大小為60°。  ………………12分

              20.(本小題滿分12分)

                 (I)解:

              設(shè) “從甲盒內(nèi)取出的2個(gè)球均為黑球”為事件,“從乙盒內(nèi)取出的2個(gè)球均為黑球”為事件.由于事件相互獨(dú)立,所以取出的4個(gè)球均為黑球的概率為

                 ………………2分

              依題設(shè),

              故乙盒內(nèi)紅球的個(gè)數(shù)為2。  ……………………5分

              (II)解: 由(I)知

              ξ的分布列為

              ξ

              0

              1

              2

              3

              P

                                                                   ………………10分

               ………………12分

              21.(本小題滿分12分)

                 (I)解:由題意設(shè)雙曲線S的方程為   ………………2分

              c為它的半焦距,

                 (II)解:

              22.(本小題滿分12分)

                 (I)解:

                

                 (III)解:

                 (III)解:

               

               

              w.w.w.k.s.5.u.c.o.m

              www.ks5u.com


              同步練習(xí)冊(cè)答案