20.[解](Ⅰ)設點的坐標為. 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標系中,曲線與坐標軸的交點都在圓上.

(1)求圓的方程;

 (2)若圓與直線交于、兩點,且,求的值.

【解析】本試題主要是考查了直線與圓的位置關(guān)系的運用。

(1)曲線軸的交點為(0,1),

軸的交點為(3+2,0),(3-2,0) 故可設的圓心為(3,t),則有32+(t-1)2=(2)2+t2,解得t=1.

(2)因為圓與直線交于、兩點,且。聯(lián)立方程組得到結(jié)論。

 

查看答案和解析>>

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(I)求橢圓的方程;

(II)若過點(2,0)的直線與橢圓相交于兩點,設為橢圓上一點,且滿足O為坐標原點),當 時,求實數(shù)的取值范圍.

【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運用。

第一問中,利用

第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的不等式,表示得到t的范圍。

解:(1)由題意知

 

查看答案和解析>>

已知== ,=,設是直線上一點,是坐標原點.

⑴求使取最小值時的;  ⑵對(1)中的點,求的余弦值.

【解析】第一問中利用設,則根據(jù)已知條件,O,M,P三點共線,則可以得到x=2y,然后利用

可知當x=4,y=2時取得最小值。

第二問中利用數(shù)量積的性質(zhì)可以表示夾角的余弦值,進而得到結(jié)論。

(1)、因為設

可知當x=4,y=2時取得最小值。此時。

(2)

 

查看答案和解析>>

已知橢圓的長軸長為,焦點是,點到直線的距離為,過點且傾斜角為銳角的直線與橢圓交于A、B兩點,使得.

(1)求橢圓的標準方程;           (2)求直線l的方程.

【解析】(1)中利用點F1到直線x=-的距離為可知-.得到a2=4而c=,∴b2=a2-c2=1.

得到橢圓的方程。(2)中,利用,設出點A(x1,y1)、B(x2,y2).,借助于向量公式再利用 A、B在橢圓+y2=1上, 得到坐標的值,然后求解得到直線方程。

解:(1)∵F1到直線x=-的距離為,∴-.

∴a2=4而c=,∴b2=a2-c2=1.

∵橢圓的焦點在x軸上,∴所求橢圓的方程為+y2=1.……4分

(2)設A(x1,y1)、B(x2,y2).由第(1)問知

,

……6分

∵A、B在橢圓+y2=1上,

……10分

∴l(xiāng)的斜率為.

∴l(xiāng)的方程為y=(x-),即x-y-=0.

 

查看答案和解析>>

如圖,在三棱錐中,平面平面,,,中點.(Ⅰ)求點B到平面的距離;(Ⅱ)求二面角的余弦值.

【解析】第一問中利用因為中點,所以

而平面平面,所以平面,再由題設條件知道可以分別以、、,軸建立直角坐標系得,,,,,

故平面的法向量,故點B到平面的距離

第二問中,由已知得平面的法向量,平面的法向量

故二面角的余弦值等于

解:(Ⅰ)因為,中點,所以

而平面平面,所以平面,

  再由題設條件知道可以分別以、, 軸建立直角坐標系,得,,,,

,故平面的法向量

,故點B到平面的距離

(Ⅱ)由已知得平面的法向量,平面的法向量

故二面角的余弦值等于

 

查看答案和解析>>


同步練習冊答案