(2)求直線和的斜率之積的值.并證明必存在兩個(gè)定點(diǎn)使得恒為定值, 查看更多

 

題目列表(包括答案和解析)

已知,若過定點(diǎn)、以(λ∈R)為法向量的直線l1與過點(diǎn)為法向量的直線l2相交于動(dòng)點(diǎn)P.
(1)求直線l1和l2的方程;
(2)求直線l1和l2的斜率之積k1k2的值,并證明必存在兩個(gè)定點(diǎn)E,F(xiàn),使得恒為定值;
(3)在(2)的條件下,若M,N是上的兩個(gè)動(dòng)點(diǎn),且,試問當(dāng)|MN|取最小值時(shí),向量是否平行,并說明理由.

查看答案和解析>>

已知點(diǎn)E、F的坐標(biāo)分別是(-2,0)、(2,0),直線EP、FP相交于點(diǎn)P,且它們的斜率之積為-
1
4

(1)求證:點(diǎn)P的軌跡在一個(gè)橢圓C上,并寫出橢圓C的方程;
(2)設(shè)過原點(diǎn)O的直線AB交(1)中的橢圓C于點(diǎn)A、B,定點(diǎn)M的坐標(biāo)為(1,
1
2
)
,試求△MAB面積的最大值,并求此時(shí)直線AB的斜率kAB
(3)反思(2)題的解答,當(dāng)△MAB的面積取得最大值時(shí),探索(2)題的結(jié)論中直線AB的斜率kAB和OM所在直線的斜率kOM之間的關(guān)系.由此推廣到點(diǎn)M位置的一般情況或橢圓的一般情況(使第(2)題的結(jié)論成為推廣后的一個(gè)特例),試提出一個(gè)猜想或設(shè)計(jì)一個(gè)問題,嘗試研究解決.
[說明:本小題將根據(jù)你所提出的猜想或問題的質(zhì)量分層評(píng)分].

查看答案和解析>>

已知點(diǎn)E、F的坐標(biāo)分別是(-2,0)、(2,0),直線EP、FP相交于點(diǎn)P,且它們的斜率之積為
(1)求證:點(diǎn)P的軌跡在一個(gè)橢圓C上,并寫出橢圓C的方程;
(2)設(shè)過原點(diǎn)O的直線AB交(1)中的橢圓C于點(diǎn)A、B,定點(diǎn)M的坐標(biāo)為,試求△MAB面積的最大值,并求此時(shí)直線AB的斜率kAB
(3)反思(2)題的解答,當(dāng)△MAB的面積取得最大值時(shí),探索(2)題的結(jié)論中直線AB的斜率kAB和OM所在直線的斜率kOM之間的關(guān)系.由此推廣到點(diǎn)M位置的一般情況或橢圓的一般情況(使第(2)題的結(jié)論成為推廣后的一個(gè)特例),試提出一個(gè)猜想或設(shè)計(jì)一個(gè)問題,嘗試研究解決.
[說明:本小題將根據(jù)你所提出的猜想或問題的質(zhì)量分層評(píng)分].

查看答案和解析>>

設(shè)F1、F2分別為橢圓C:=1(ab>0)的左、右兩個(gè)焦點(diǎn).

(1)若橢圓C上的點(diǎn)A(1,)到F1F2兩點(diǎn)的距離之和等于4,寫出橢圓C的方程和焦點(diǎn)坐標(biāo);

(2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段F1K的中點(diǎn)的軌跡方程;

(3)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPMkPN時(shí),那么kPM與kPN之積是與點(diǎn)P位置無關(guān)的定值,試寫出雙曲線=1具有類似特性的性質(zhì)并加以證明.

查看答案和解析>>

設(shè)F1、F2分別為橢圓C:=1(a>b>0)的左、右兩個(gè)焦點(diǎn).

(1)若橢圓C上的點(diǎn)A(1,)到F1、F2兩點(diǎn)的距離之和等于4,寫出橢圓C的方程和焦點(diǎn)坐標(biāo);

(2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段F1K的中點(diǎn)的軌跡方程;

(3)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN時(shí),那么kPM與kPN之積是與點(diǎn)P位置無關(guān)的定值,試寫出雙曲線=1具有類似特性的性質(zhì)并加以證明.

查看答案和解析>>

一、填空題

1.           2.         3.156         4. -          5.

6.     7.        8.(理)   (文)       9.0

10.     11.(理)     (文)

 

二、選擇題

12.C           13.B          14.(理)C   (文)B           15.B

 

三、解答題

16. 【解】(1)由已知:,   (2分)

,      (4分)

,故。              (6分)

(2)由,得,     (8分)

,。                   (10分)

。              (12分)

17.【解】

(理)設(shè)三次事件依次為,命中率分別為,

(1)令,則,∴,。      (6分)

 (2)。      (13分)

(文)拋物線的準(zhǔn)線是,          (3分)

雙曲線的兩條漸近線是。 (6分)

    三條線為成得三角形區(qū)域的頂點(diǎn)為,,(10分)

當(dāng)時(shí),。              (13分)

18.【解】(1),。(4分)

   (2)令,

,(8分)

即三位市民各獲得140、100和110元折扣。(10分)

   (3)(元)。(16分)

19.【解】(1)直線的法向量的方程:,

即為;…(2分)

直線的法向量,的方程:

即為。 (4分)

(2)。   (6分)

設(shè)點(diǎn)的坐標(biāo)為,由,得。(8分)

由橢圓的定義的知存在兩個(gè)定點(diǎn),使得恒為定值4。

此時(shí)兩個(gè)定點(diǎn)為橢圓的兩個(gè)焦點(diǎn)。(10分)

(3)設(shè),則,

,得。(12分)

當(dāng)且僅當(dāng)時(shí),取最小值。(14分)

,故平行。(16分)

20.【解】(1)由,得。由,得第二行的公差,∴。(2分)

,,得,∴。(4分)

(2);(6分)

。(10分)

(3), 兩式相減,得,。(12分)當(dāng)時(shí),。(13分)

時(shí),顯然能被21整除;(14分)

②假設(shè)時(shí),能被21整除,當(dāng)時(shí),

能被21整除。結(jié)論也成立。(17分)

由①、②可知,當(dāng)是3的倍數(shù)時(shí),能被21整除。(18分)


同步練習(xí)冊(cè)答案