由重要不等式得.--10′ 查看更多

 

題目列表(包括答案和解析)

閱讀理解下列例題:
例題:解一元二次不等式x2-2x-3<0.
分析:求解一元二次不等式時,應把它轉化成一元一次不等式組求解.
解:把二次三項式x2-2x-3分解因式,得:x2-2x-3=(x-1)2-4=(x-3)(x+1),又x2-2x-3<0,
∴(x-3)(x+1)<0.
由“兩實數(shù)相乘,同號得正,異號得負”,得數(shù)學公式 ①或 數(shù)學公式
由①,得不等式組無解;由②,得-1<x<3.
∴(x-3)(x+1)<0的解集是-1<x<3.
∴原不等式的解集是-1<x<3.
(1)仿照上面的解法解不等式x2+4x-12>0.
(2)汽車在行駛中,由于慣性作用,剎車后還要繼續(xù)向前滑行一段距離才能停住,我們稱這段距離為“剎車距離”,剎車距離是分析事故的一個重要因素.某車行駛在一個限速為40千米/時的彎道上,突然發(fā)現(xiàn)異常,馬上剎車,但是還是與前面的車發(fā)生了追尾,事故后現(xiàn)場測得此車的剎車距離略超過10米,我們知道此款車型的剎車距離S(米)與車速x(千米/時)滿足函數(shù)關系:S=ax2+bx,且剎車距離S(米)與車速x(千米/時)的對應值表如下:
車速x(千米/時)305070
剎車距離S(米)61528
問該車是否超速行駛?

查看答案和解析>>

閱讀理解下列例題:
例題:解一元二次不等式x2-2x-3<0.
分析:求解一元二次不等式時,應把它轉化成一元一次不等式組求解.
把二次三項式x2-2x-3分解因式,得:x2-2x-3=(x-1)2-4=(x-3)(x+1),又x2-2x-3<0,
∴(x-3)(x+1)<0.
由“兩實數(shù)相乘,同號得正,異號得負”,得
x-3>0
x+1<0
 ①或 
x-3<0
x+1>0
 ②
由①,得不等式組無解;由②,得-1<x<3.
∴(x-3)(x+1)<0的解集是-1<x<3.
∴原不等式的解集是-1<x<3.
(1)仿照上面的解法解不等式x2+4x-12>0.
(2)汽車在行駛中,由于慣性作用,剎車后還要繼續(xù)向前滑行一段距離才能停住,我們稱這段距離為“剎車距離”,剎車距離是分析事故的一個重要因素.某車行駛在一個限速為40千米/時的彎道上,突然發(fā)現(xiàn)異常,馬上剎車,但是還是與前面的車發(fā)生了追尾,事故后現(xiàn)場測得此車的剎車距離略超過10米,我們知道此款車型的剎車距離S(米)與車速x(千米/時)滿足函數(shù)關系:S=ax2+bx,且剎車距離S(米)與車速x(千米/時)的對應值表如下:
車速x(千米/時) 30 50 70
剎車距離S(米) 6 15 28
問該車是否超速行駛?

查看答案和解析>>

閱讀理解下列例題:
例題:解一元二次不等式x2-2x-3<0.
分析:求解一元二次不等式時,應把它轉化成一元一次不等式組求解.
解:把二次三項式x2-2x-3分解因式,得:x2-2x-3=(x-1)2-4=(x-3)(x+1),又x2-2x-3<0,
∴(x-3)(x+1)<0.
由“兩實數(shù)相乘,同號得正,異號得負”,得 ①或  ②
由①,得不等式組無解;由②,得-1<x<3.
∴(x-3)(x+1)<0的解集是-1<x<3.
∴原不等式的解集是-1<x<3.
(1)仿照上面的解法解不等式x2+4x-12>0.
(2)汽車在行駛中,由于慣性作用,剎車后還要繼續(xù)向前滑行一段距離才能停住,我們稱這段距離為“剎車距離”,剎車距離是分析事故的一個重要因素.某車行駛在一個限速為40千米/時的彎道上,突然發(fā)現(xiàn)異常,馬上剎車,但是還是與前面的車發(fā)生了追尾,事故后現(xiàn)場測得此車的剎車距離略超過10米,我們知道此款車型的剎車距離S(米)與車速x(千米/時)滿足函數(shù)關系:S=ax2+bx,且剎車距離S(米)與車速x(千米/時)的對應值表如下:
車速x(千米/時)305070
剎車距離S(米)61528
問該車是否超速行駛?

查看答案和解析>>

(2007•東城區(qū)二模)閱讀理解下列例題:
例題:解一元二次不等式x2-2x-3<0.
分析:求解一元二次不等式時,應把它轉化成一元一次不等式組求解.
解:把二次三項式x2-2x-3分解因式,得:x2-2x-3=(x-1)2-4=(x-3)(x+1),又x2-2x-3<0,
∴(x-3)(x+1)<0.
由“兩實數(shù)相乘,同號得正,異號得負”,得
x-3>0
x+1<0
 ①或 
x-3<0
x+1>0
 ②
由①,得不等式組無解;由②,得-1<x<3.
∴(x-3)(x+1)<0的解集是-1<x<3.
∴原不等式的解集是-1<x<3.
(1)仿照上面的解法解不等式x2+4x-12>0.
(2)汽車在行駛中,由于慣性作用,剎車后還要繼續(xù)向前滑行一段距離才能停住,我們稱這段距離為“剎車距離”,剎車距離是分析事故的一個重要因素.某車行駛在一個限速為40千米/時的彎道上,突然發(fā)現(xiàn)異常,馬上剎車,但是還是與前面的車發(fā)生了追尾,事故后現(xiàn)場測得此車的剎車距離略超過10米,我們知道此款車型的剎車距離S(米)與車速x(千米/時)滿足函數(shù)關系:S=ax2+bx,且剎車距離S(米)與車速x(千米/時)的對應值表如下:
車速x(千米/時) 30 50 70
剎車距離S(米) 6 15 28
問該車是否超速行駛?

查看答案和解析>>

金銀花自古被譽為清熱解毒的良藥,同時也是很多高級飲料的常用原料.“渝蕾一號”為重慶市中藥研究院所選育的金銀花優(yōu)良品種,較傳統(tǒng)金銀花具有質量好、產(chǎn)量高、結蕾整齊等優(yōu)點.某花農(nóng)于前年引進一批“渝蕾一號”金銀花種苗進行種植,去年第一次收獲.因金銀花入藥或作飲料需要使用干燥花蕾,該花農(nóng)將收獲的新鮮金銀花全部干燥成干花蕾后出售.根據(jù)經(jīng)驗,每畝鮮花蕾產(chǎn)量y(千克)與每畝種苗數(shù)x(株)滿足關系式:y=-0.1x2+24.15x-440,每畝成本z(元)與每畝種苗數(shù)x(株)之間的函數(shù)關系滿足下表:
每畝種苗數(shù)x(株) 100 110 120 130 140
每畝成本z(元) 1800 1860 1920 1980 2040
(1)請觀察題中的表格,用所學過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關知識,求出z與x的函數(shù)關系式;
(2)若該品種金銀花的折干率為20%(即每100千克鮮花蕾,干燥后可得20千克干花蕾),去年每千克干花蕾售價為200元,則當每畝種苗數(shù)x為多少時,每畝銷售利潤W可獲得最大值,并求出該最大利潤;(利潤=收入-成本)
(3)若該花農(nóng)按照(2)中獲得最大利潤的方案種植,并不斷改善養(yǎng)植技術,今年每畝鮮花蕾產(chǎn)量比去年增加2a%.但由于市場上同類產(chǎn)品數(shù)量猛增,造成每千克干花蕾的售價比去年降低0.5a%,結果今年每畝銷售總額為45810元.請你參考以下數(shù)據(jù),估算出a的整數(shù)值(0<a<10).(參考數(shù)據(jù):
5
≈2.24
,
6
≈2.45
7
≈2.65
,
8
≈2.83

查看答案和解析>>


同步練習冊答案